SIMATIC S5

SINEC L2 Interface of the S5-95U Programmable Controller

Manual

STEP ${ }^{\circledR}$ SINEC ${ }^{\circledR}$ and SIMATIC ${ }^{\circledR}$ are registered trademarks of Siemens AG.
Copyright© Siemens AG 1993
Subject to change without prior notice.
The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Preface
$\left.\begin{array}{\|l\|}\hline \text { System Description } \\ \hline \text { Installation Guidelines } \\ \hline \text { Start-Up, Tests, and Diagnostics } \\ \hline \text { Data Transmission Using a Standard Connection } \\ \hline \text { Integrated Standard Function Blocks, L2-SEND and L2-RECEIVE } \\ \hline \text { Data Transmission Using PLC to PLC Connections } \\ \hline \text { Data Transmission Using Cyclic I/O (ZP) } \\ \hline \text { Data Transmission by Accessing Layer 2 Services } \\ \hline \hline \text { Programmer Functions Over the SINEC L2 Network } \\ \hline \text { Appendices } \\ \hline \text { Index } \\ \hline\end{array}\right]$

Table of Contents

Page
Preface ix
1 System Description $1-1$
1.1 Communications in Industry $1-1$
1.2 The SINEC L2 Local Area Network $1-3$
1.3 Procedure for Accessing the SINEC L2 Network $1-4$
1.4 Assigning Parameters for the L2 Interface of the S5-95U 1-8
1.5 Types of Data Transmission for the S5-95U $1-13$
1.6 Physical Bus Characteristics and Installation Techniques for the SINEC L2 Network 1-21
1.6.1 RS 485 Transmission Technology 21
1.6.2 Fiber Optics Transmission Technology 1-25
1.6.3 Mixed Configuration of RS 485 and Fiber Optics Transmission Technology 1-28
2 Installation Guidelines 2-1
2.1 Basic Configuration 2-1
2.2 Installing a SINEC L2 Bus Segment 2-2
2.3 Linking Bus Segments with the L2 Repeater 2-4
2.3.1 Electrical Design of the SINEC L2 Repeater RS 485 2-4
2.3.2 Connecting the Supply Voltage 2-5
2.3.3 Connecting Bus Segments 2-6
2.4 Routing Cables 2-8
3 Start-Up, Tests, and Diagnostics 3-1
3.1 Design and Mode of Operation of the Programmable Controller $3-2$
3.2 START-UP Sequence 3-4
Page
3.3 Starting Up a System 5
3.3.1 Suggestions for Configuring and Installing the Equipment 3-5
3.3.2 Prerequisites for Starting Up the S5-95U as a SINEC L2 Station 6
3.3.3 System Startup Diagnostics and Procedures 3-7
3.4 FMA Services 3-10
3.4.1 Principle of Operation 3-10
3.4.2 The Types of FMA Services 3-12
3.4.3 Assigning Parameters in DB1 for the FMA Services 3-13
3.4.4 Managing of all FMA Services with FB222 3-14
3.4.5 Reading Out a List of All Active Stations on the Network (LAS_LIST_CREATE) 3-17
3.4.6 Reading the Status of Another Station (FDL_STATUS) 3-19
3.4.7 Reading Updated Bus Parameters (READ_VALUE) 3-21
3.4.8 Reading Out Available Token Hold Time When Receiving the Token (TIME TTH READ) 3-24
3.4.9 Reading Out the Event Message (MAC_EVENT) 3-26
4 Data Transmission Using a Standard Connection 4 - 1
4.1 Features of a Standard Connection 4-1
4.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Standard Connections $4-3$
4.3 Transmitting Data $4-5$
4.4 Receiving Data $4-7$
4.5 Programming Example for Data Transmission via a Standard Connection 4-9
4.6 Broadcast Request ("Transmit to All") $4-14$
5 Integral Standard Function Blocks L2-SEND and L2-RECEIVE $5-1$
5.1 Parameters for L2-SEND and L2-RECEIVE 5-2
5.2 Direct and Indirect Parameter Settings for the L2 Function Blocks $5-4$
5.3 Parameter Assignment Error Byte (PAFE) $5-5$
5.4 Status Byte 5-6
Page
6Data Transmission Using PLC-to-PLC Connections6 - 1
6.1 Features of the PLC-to-PLC Connections $6-1$
6.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with PLC-to-PLC Connections $6-4$
6.3 Programming Example for Data Transmission via PLC-to-PLC Connections Using Standard Function Blocks 6 - 6
7 Data Transmission Using Cyclic I/O 7-1
7.1 Features of Cyclic I/O 7-1
7.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Cyclic I/O $7-4$
7.3 Controlling Data Transmission in the Control Program $7-7$
7.4 Programming Example for Data Transmission via Cyclic I/O $7-12$
8 Data Transmission by Accessing Layer 2 Services 8-1
8.1 Characteristic Features of Layer 2 Access Data Transmission 8 - 2
8.2 Types and Characteristic Features of the Layer 2 Services $8-5$
8.3 Assigning the S5-95U Parameters for Data Communications $8-9$
8.4 FBs for Managing All Layer 2 Services $8-11$
8.5 Sending Data to a Station (SDA Service) $8-15$
8.6 Sending Data to Several Stations (SDN) $8-19$
8.7 Holding Data for Fetching Once Only by a Station (RUP_SINGLE Service) $8-23$
8.8 Holding Data Ready for Fetching Several Times Over by One or More Stations (RUP_MULTIPLE) 8-26
8.9 Sending Data and Fetching Data from a Station (SRD Service) $8-29$
Page
9 Programmer Functions Over the SINEC L2 Network 9-1
9.1 Programmer Functions 9-2
9.2 Selecting the L2 Interface $9-3$
9.3 Entering Defaults 9-4
9.4 Editing a Path 9-5
9.5 Setting the L2 Basic Parameters on the Programmer $9-10$
9.6 Activating an Editing Path $9-10$
Appendices
A DB1 Parameters, DB1 Parameter Assignment Errors, Calculation of Target Rotation Time A - 1
B SAP Numbers / Job Numbers B - 1
C List of Abbreviations/Glossary C - 1
D List of Accessories and Order Numbers D - 1
E Technical Specifications; Cycle Delay Times of the PLC Caused by SINEC L2 Operations E - 1
F S5-95U Communications Matrix and Emulation of Types of Data Transmission in Layer 2 with S5-95U F - 1
Index

How to Use This Manual

The S5-95U programmable controller with SINEC L2 interface can communicate with SIMATIC S5 controllers and other control devices via the SINEC L2 bus system.

To use the SINEC L2 interface to its full capacity, you need detailed information.
This manual contains descriptions for installing and operating the following programmable controllers as SINEC L2 stations:

- S5-95U, Order No. 6ES5 095-8MB01
- S5-95U, Order No. 6ES5 095-8MB02

The manual does not provide information on the performance of other controllers on the L2 bus.
Only special features of the S5-95U pertaining to data interchange with the CP 5430 communications processor are mentioned.

Experience in configuring and starting up bus-type LANs is helpful, though not necessary, to work with this manual successfully.

This section is intended to make it easier for you to use the manual.

Contents of This Manual

- Chapter 1

This chapter provides an overview of the applications, performance capabilities, operation principle, basic terminology, and transmission physics of the SINEC L2 bus system. This chapter characterizes the possible types of data transmission and specifies and explains the selection criteria for special applications.

- Chapter 2

This chapter specifies the installation procedures that you should follow to ensure that your S5-95U controller functions properly as a station on the SINEC L2 bus.

- Chapter 3

This chapter summarizes information that you need to start up your S5-95U controller as a station on the SINEC L2 bus. You will also discover how to recognize faults in the controller and find out what tests and diagnostics are available to you.

- Chapters 4, 5, 6, 7 and 8

These chapters use examples to describe the various types of data transmission in detail.

- Chapter 9

This chapter shows you how to implement programmer functions over the LAN.

- Appendices

The appendices contain two types of information. On the one hand, you will find brief information for regular use (e.g., all the DB1 parameters); on the other hand, you will find additional information of interest to network experts (e.g., concerning the SAPs).

Each chapter begins with a brief explanation of its contents. By reading the first section of a chapter, you can determine whether the information in the chapter is important to you.

Conventions

The "S5-90U/S5-95U System Manual" and the SINEC L2 Manual - Interface of the S5-95U Programmable Controller" observe the same conventions.
All the conventions listed at the beginning of the System Manual apply also to this manual. Please refer to that Manual. Your attention is also drawn to the "Safety-Related Guidelines for the User" on page xi at the end of this chapter.

Courses

Siemens offer a wide range of training courses for SINEC users.
For more information, please contact

- Informations- und Trainings-Center für Automatisierungstechnik

AUT 959 Kursbüro
Postfach 211262
76181 Karlsruhe
Federal Republic of Germany
Tel.: (Nat. access code) 721 595-2917
or

- Your nearest Siemens representative

Reference Material

This manual contains a comprehensive description of the SINEC L2 interface of the S5-95U programmable controller. The following manuals etc. contain more detailed information on topics that are handled only briefly here:

```
SINEC L2 Local Area Network
CP 5430
Order No. 6GK1 970-5AA00-0AA0
```

SINEC
L2/L2F0 Manual
Order No. 6GK1 970-5CA00-0AA0
Installation Guidelines:
Installing the SINEC L2 Local Area Network
Order No. AR 463-2-220
PROFIBUS Standard (DIN 19245)
Beuth-Verlag; Berlin 1988
Bender, Klaus: Profibus
Hauser-Verlag; Munich 1990
Kafka, Gerhard: Grundlagen der Datenkommunikation;
Datacom-Fachbuchreihe; Pulheim 1989.
(available in German only)
Stöttinger, Klaus H.: Das OSI-Referenzmodell;
Datacom-Fachbuchreihe; Pullheim 1989.
(available in German only)

There are correction forms at the end of this manual. Please use them to indicate any corrections, additions or suggestions you might have in the way of improvement that will benefit the next edition of the manual.

Safety-Related Guidelines for the User

This document provides the information required for the intended use of the particular product. The documentation is written for technically qualified personnel.
Qualified personnel as referred to in the safety guidelines in this document as well as on the product itself are defined as follows.

- System planning and design engineers who are familiar with the safety concepts of automation equipment.
- Operating personnel who have been trained to work with automation equipment and are conversant with the contents of the document in as far as it is connected with the actual operation of the plant.
- Commissioning and service personnel who are trained to repair such automation equipment and who are authorized to energize, de-energize, clear, ground, and tag circuits, equipment, and systems in accordance with established safety practice.

Danger Notices

The notices and guidelines that follow are intended to ensure personal safety, as well as protect the products and connected equipment against damage.
The safety notices and warnings for protection against loss of life (the users or service personnel) or for protection against damage to property are highlighted in this document by the terms and pictograms defined here. The terms used in this document and marked on the equipment itself have the following significance.

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are not taken.

Note

contains important information about the product, its operation or a part of the document to which special attention is drawn.

Proper Usage

Warning

- The equipment/system or the system components may only be used for the applications described in the catalog or the technical description, and only in combination with the equipment, components, and devices of other manufacturers as far as this is recommended or permitted by Siemens.
- The product will function correctly and safely only if it is transported, stored, set up, and installed as intended, and operated and maintained with care.

Iた Systen Description

1.2 The SINEC L2 Local Area Network 1 - 3
1.3 Procedure for Accessing the SINEC L2 Network 1 - 4
1.4 Assigning Parameters for the L2 Interface of the S5-95U $\ldots \ldots \ldots$. 1 - 8
1.5 Types of Data Transmission for the S5-95U 1 - 13
1.6 Physical Bus Characteristics and Installation Techniques for the SINEC L2 Network

1-21
1.6.1 RS 485 Transmission Technology . 1 - 21
1.6.2 Fiber Optics Transmission Technology . 1-25
1.6.3 Mixed Configuration RS 485 and Fiber Optics Transmission Technology

Figures

1-1. Hierarchy Levels in the Computer-Integrated Automation Network 1-1
1-2. Bus Segment 1. : 3
1-3. Bus Accessing Procedure 1. - 5
1-4. Distribution of the Target Rotation Time (1) 1-7
1-5. Distribution of the Target Rotation Time (2) $.1-7$
1-6. DB1 with the Default Parameters 1. - 8
1-7. Data Transmission Types 1. - 13
1-8. PLC-to-PLC Connection between Active S5-95Us 1-18
1-9. Cyclical I/O between an Active and Passive S5-95U 1-18
1-10. Standard Connection for Porting Programs from SINEC L1 to SINEC L2 1-19
1-11. PLC-to-PLC Connection between an Active CP 5430 and an Active S5-95U 1-19
1-12. Cyclic I/O between an Active CP 5430 and a Passive S5-95U 1-19
1-13. Layer 2 Access between an Active CP 5410 and an Active S5-95U 1-20
1-14. SINEC L2 Bus Segment with RS 485 Technology 1-21
1-15. SINEC L2 Network with RS 485 Technology 1 - 22
1-16. L2 Bus Connector with Degree of Protection IP 20 without Connector for a Programmer 1. - 23
1-17. SINEC L2 Network with Fiber Optic Cable 1 - 25
1-18. Point to Point Link via a Fiber Optic Cable 25
1-19. SINEC L2FO Bus Terminal SF-B/PF-B 1-26
1-20. SINEC L2FO Active Star Coupler AS 501 1-27
1-21. Mixed Configuration with RS 485 and FO Transmission Technology 1-28
1-22. Two SINECL2 Networks of the RS 485 Technology Linked via Fiber Optic Cable 1-28
1-23. SINEC L2FO SF Repeater Adapter for L2 Repeater 1-29
Tables
1-1. DB1 Basic Parameters 1.- 9
1-2. Relevant Parameters for the S5-95U as an Active/Passive station 1-9
1-3. Defining the Basic Parameter Arguments for S5-95U PLCs 1-10
1-4. Defining the Arguments of the Basic Parameters for the S5-95U in Conjunction with the CP 5410 and/or CP 5430-1 $1-12$
1-5. Basic Parameter Arguments for the S5-95U in Conjunction with Other SIMATIC Devices 1.- 12
1-6. Recommended Types of Data Transmission - 14
1-7. Characteristics of the Various Types of Data Transmission 1-15
1-8. Types of Data Transmission for S5-95Us as Active Stations 1-16
1-9. Types of Data Transmission for S5-95Us as Passive Stations 1-17
1-10. Distance Table for RS 485 Technology - 22
1-11. SINEC L2 Bus Terminals 1-23
1 -12. Technical Specifications of the Bus Cable 1-24
1-13. Distance Table for Glass Fiber Optic Cable Technology 1-26

1 System Description

In this chapter, you will learn the following:

- The applications that the SINEC L2 network is suited for
- The performance capabilities that the SINEC L2 network is equipped with
- The operation principle of the SINEC L2 network
- The explanation of important basic terminology and parameters
- The types of data transmission that are possible and which criteria you use to select them
- The transmission physics that can be used

1.1 Communications in Industry

In today's modern production control systems, the installations for process automation operate in an information network that can be organized into several hierarchy levels, as illustrated in Figure 1-1.

Figure 1-1. Hierarchy Levels in the Computer-Integrated Automation Network
The following sections explain the different tasks of each of the hierarchy levels.

Definitions

- Planning Level

This is where you plan orders, production strategies and production guidelines, and where the information from the production process is monitored.

- Process Control Level

This is where you decide how the production will take place and how the function groups will be coordinated.

- Cell Level

This level receives requests from the process control level. It consists, as a rule, of assembly cells. Each assembly cell is controlled by at least one programmable controller.

- Field Level

This is where the field devices such as sensors and actuators are. The task of these units is to make the exchange of information between control and technical process possible.

Communication Tasks Required from the Different Networks

The requirements for the planning and process control level networks differ from the requirements for the cell and field level networks as follows:

- Communication in the planning and control levels
- Large amounts of data (range >100 bytes)
- Often no time-critical requirements
- Electromagnetic compatibility requirements matched to office environment (with additional specific measures, also for industrial environment)
- Large network expansion
- Large number of stations
- Higher connection costs acceptable
- Communication in the cell and field levels
- Smaller amounts of data (range <100 bytes)
- Time-critical requirements (real-time requirements)
- High electromagnetic compatibility requirements (industrial environment)
- Small network expansion
- Small number of stations (range <100)
- Low connection costs

The SINEC L2 network is optimally adapted to the requirements of the cell and field levels".

1.2 The SINEC L2 Local Area Network

The SINEC L2 LAN is based on the PROFIBUS Standards (DIN 19245).
PROFIBUS (PROcess Fleld BUS) is the German process and field bus standard that is defined in the PROFIBUS Standards (DIN 19245). This standard sets up functional, electrical and mechanical characteristics for a bit-serial field network. The purpose of these standardization efforts is to be able to network programmable controllers and field devices of different manufacturers without expensive adapters. Therefore, you have the ability to mix and match components from different manufacturers, and to have them communicate with each other via the SINEC L2 network as long as the components meet the PROFIBUS Standard. The SINEC L2 network services of the S5-95U use part of the services defined in the PROFIBUS Standards.

In order to be able to use S5-95U programmable controllers as SINEC L2 stations, you need one of the following two items:

- The RS 485 bus terminal that connects SINEC L2 stations via the terminal cable with the bus cable that connects the individual bus terminals with each other.
- The SINEC L2 bus connector with bus cable that connects stations with each other.

Figure 1-2 represents a bus segment using SINEC L2 bus connectors.

Figure 1-2. Bus Segment

In order to communicate, each station must observe certain rules:

- There must be a rule for who is allowed to transmit via the common bus cable at a given time (section 1.3 "Procedure for Accessing the Bus").
- A common language must exist between two stations (section 1.5 "Types of Data Transmission").
- The electrical features of the stations must match each other (section 1.6 "Bus Physics").

1.3 Procedure for Accessing the SINEC L2 Network

The following section discusses the basic mode of operation of the SINEC L2 network. The goal of this section is to make you familiar with terms that you will need to configure the S5-95U as a station and to assign parameters in the S5-95U.

An essential aspect of the network is the access procedure. On the SINEC L2, there are two types of stations with different access rights: active stations and passive stations.

Active Stations

- Are allowed, when they have the right to transmit data to other stations
- Are allowed to request data from other stations

Passive Stations

- Are allowed to exchange data with an active station only after being requested to do so by the latter.

Whether a station is active or passive depends on the respective unit. Simple field units such as motor control units are as a rule passive; smart units such as programmable logic controllers, on the other hand, are active.
The S5-95U can be a passive as well as an active station on the network. This is possible by setting parameters.

Station Address

Each station on the bus has a station address that you can assign by setting parameters.

Token / Right to Transmit

So that all active stations do not try to access the bus at the same time, an active station that is ready to transmit has to wait until it receives the right to access the bus. The station receives this right through a special frame, the token frame. The structure of the token frame and how its transmission is controlled will not be discussed here (refer to the PROFIBUS Standard, DIN 19245).

It is important for you to know the following:

- The token frame (and the permission to access) automatically goes from one station to the next one (according to the ascending sequence of the station addresses).
- The token frame is passed on in the logical ring: The station with the highest address passes the token frame on to the station with the lowest address. For each active station there is one token rotation cycle between token frame transmitting and token frame receiving .

A network normally contains several active and several passive stations. Figure $1-3$ shows a network with three active and three passive L2 stations.

Figure 1-3. Bus Accessing Procedure

Explanations for Figure 1-3:

- The token frame is passed only from an active station to another.

Stations 1, 2 and 3 are active. The token frame is passed on as follows:
12312

- One token cycle includes passing the token three times:

1231.

- Stations 100, 101 and 102 are passive.
- Stations addresses 0, 4 to 99, and 103 to 126 are not assigned.
- Active stations can be assigned addresses in the range 1 to 31.
- Passive stations can be assigned addresses in the range 1 to 126.
- It is not absolutely necessary to assign the station addresses in ascending order.

Based on the mode of operation of the SINEC L2, two special cases can be deduced:

1) If only one station is active and all others are passive, the bus functions according to the master-slave principle.
2) If all stations are active, a token passing procedure is present.

Target Rotation Time

A token cycle takes a certain amount of time. You must set the maximum permissible token cycle time as target rotation time (target rotation time in DB1, TRT parameter).
Even the transmission of large amounts of data must conform to the target rotation time set in DB1. In order to conform to this time, the SINEC L2 uses the following principle.

Time Management of the Network

Each active station measures the time in which it was not in the possession of the token. This time is the station's "real" rotation time, i.e., the time used up by the other stations. The station compares this measured time with the previously set target rotation time.
The processing of the frame to be transmitted depends on the results of this comparison and on the priority of the message frames as follows:

The preset priority of the message frames is low for the standard connection (chapter 4), PLC-toPLC connection (chapter 6) and cyclic I/O (chapter 7). Only for layer 2 access can you decide whether the message frame is to be given high or low priority.

Possible results of the comparison between the rotation time measured (the "real" rotation time) and the target rotation time:

1) The "real" rotation time is shorter than the target rotation time.

Result: All send and receive jobs in the queue are executed until the target rotation time has been reached or the jobs in the queue have been processed; first the message frames with high priority, then the message frames with low priority.
2) The "real" rotation time is longer than the target rotation time.

Result: Only one more message frame with high priority is transmitted. The message frames with low priority are not transmitted until the "real" rotation time is shorter than the target rotation time in the following token cycles.

This is shown in Figures 1-4 and 1-5.

Each station measures the "real" rotation time and calculates the difference between target rotation time and "real" rotation time (= token hold time). During this time, a station can transmit: first, the frames with high priority, then the frames with low priority. When the token hold time is used up, the station must pass the token to the next station.

Figure 1-4. Distribution of the Target Rotation Time (1)

If the transmitter has no token hold time at its disposal (see Figure 1-5), it can only transmit one frame with high priority before is has to pass the token.

Figure 1-5. Distribution of the Target Rotation Time (2)

Broadcasting

Broadcasting is when an active station sends a message frame to all active and passive stations.

Multicasting

Multicasting is when an active station sends a message frame to several active and passive stations.

1.4 Assigning Parameters for the L2 Interface of the S5-95U

You assign the parameters for the L2 interface in DB1, in the parameter block with block ID "SL2:". Irrespective of the type of data transmission you select, you must assign certain parameters (basic parameters) in DB1. The basic parameters affect only the procedures for accessing the network (see section 1.3) and not the communication mechanisms. DB1 has default settings for the basic parameters that you can use or change according to the task to be performed.

The default DB1 is illustrated in Figure 1-6.

Figure 1-6. DB1 with the Default Parameters

The basic parameters and their ranges are listed and explained in the following Table.

Table 1-1. DB1 Basic Parameters

Paramiter		
TLN	n	Own station address
STA	AKT/PAS	Own station status
BDR	p	Baud rate
HSA	q	Highest L2 station address on bus
TRT	m	Target rotation time
SET	S	Set-up time
ST	t	Slot time
SDT 1	u	Shortest delay time
SDT 2	v	Longest delay time
Argument	Permissible Range	Explanation
n	1 to 126	Station address, including 1 to 31 active S5-95U stations
AKT/PAS	- -	AKT = active, PAS = passive
p	$\begin{gathered} 9.6 ; 19.2 ; 93.75 ; 187.5 ; \\ 500 ; 1500 \end{gathered}$	Baud rate in kBaud
q	1 to 126	Station addresses
m	256 to 1048320	Bit time units*
S	0 to 494	Bit time units*
	50 to 4095	Bit time units*
u	11 to 255	Bit time units*
v	35 to 1023	Bit time units*

* One bit time unit is the time its takes to transmit one bit (reciprocal value of Baud rate) The arguments $\mathrm{s}, \mathrm{t}, \mathrm{u}$, and v depend on Baud rate (see Table 1-3)

Table 1-2 shows which basic parameters are relevant for active and passive stations.
Table 1-2. Relevant Basic Parameters for the S5-95U as an Active/Passive Station

Parameter	84	SH4.		$4 \mathrm{~S} \%$	$\stackrel{1}{82}$	SE\%	83	5மivis	SW\% \%
	X	X	X	X	X	X	X	X	X
	X	X	X				X	X	

Rules for Setting the Basic Parameters

- TLN 0 (default) is not allowed for the $\mathrm{S} 5-95 \mathrm{U}$ as L2 station (TLN 0 is reserved for a programmer). You must change the value for TLN 0 , otherwise the programmable controller stays in the STOP mode.
- Do not delete any relevant parameters, otherwise the PLC will stay in the STOP mode! Delete any irrelevant parameters (in the case of passive S5-95Us).
- The following basic parameters must be the same for all stations in the SINEC L2 network: BDR, HSA, TRT, SET, ST, SDT 1 and SDT 2. Always take the basic parameters of the slowest station! The slowest station is the station with the longest slot time in the SINEC L2 network.

Example: Communications between the CP 5410, S5-95U and CP 5430-0: preset baud rate 187.5 kbaud. The CP 5430-0 with 400 bit time units has the longest slot time (default value). Set the basic parameters of the CP 5430-0 (187.5 kbaud) for all stations (see Table 1-5).

Communications with S5-95Us (homogeneous S5-95U networks)

Define the arguments of the BDR, SET, ST, SDT 1 and SDT 2 basic parameters for the S5-95U programmable controllers in DB1 (see Table 1-3).

Table 1-3. Defining the Basic Parameter Arguments for S5-95U PLCs

Bavorate Basic h kbaud parameters 1. bill lime units	$9 \text { 96 }$	$\text { \# } 1.2 .$	93.75	18\%	$500 \mathrm{~N}$	1500
SET	0	0	0	0	0	60
ST	73	76	99	170	400	1000
SDT 1	12	12	12	12	12	150
SDT 2	40	60	80	150	360	980

Example: Define the baud rate as 187.5 kbaud in DB1. This gives the other basic parameters as follows: SET 0 ST 170 SDT 112 SDT 2150.

Bit time unit

You must specify certain parameters, e.g. the target rotation time, in bit time units. To calculate the times in milliseconds from the bit time units, use the following formula:

Time (in milliseconds) $=\frac{\text { Number of bit time units }}{\text { Baud rate (in kbits/s) }}\left(\right.$ e.g., time $\left.=\frac{1 \text { bit time unit }}{9.6 \mathrm{kbits} / \mathrm{s}}=0.104 \mathrm{~ms}\right)$

Procedure for Assigning Parameters in DB1 and the S5-95U

A default DB1 is integrated in the operating system of the S5-95U programmable controller. DB1 contains default values for parameters, including those for data exchange by means of SINEC L2.
Load the default DB1 in your programmer (function: transfer; source: PC; destination: FD (PG)).
Look for the SINEC L2 parameter block. The block ID is "SL2:".
The SINEC L2 parameter block is enclosed in comment characters (\#). The programmable controller cannot interpret the SL2: parameter block in this form (Figure 1.6). Overwrite the comment characters that appear before the block ID (SL2:) and after the last SINEC L2 parameter with a blank.

Enter the parameters according to your specifications (for basic parameters and parameters for the desired communications services, see chapters 3, 4, 6, 7 and 8) in one coherent block after the block ID.
Make sure you follow the general rules for assigning parameters. Refer to the S5-90U/S5-95U Programmable Controller System Manual, section 9.1.4.

Transfer the changed DB1 to the S5-95U. The default DB1 is overwritten with the changed DB1.

If you now switch from STOP to RUN mode, the S5-95U accepts the new parameters. If the BF LED lights up (Table 3-1), you must switch from POWER OFF to POWER ON (mode selector at RUN and backup battery inserted) on the S5-95U to transfer DB 1.

Refer to Appendix A for the following information:

- The procedure for reading the DB1 parameter assignment error code and its interpretation
- The explanations to the SET, ST, SDT 1, and SDT 2 parameters. (It is not absolutely necessary to know the meaning of these parameters.)
- The procedure for setting (calculating) the target rotation time (TRT) depending on the baud rate (BDR)

Communications with the CP 5410 and/or CP 5430-1

You must set the same basic parameters BDR, SET, ST, SDT 1 and SDT 2 for the S5-95U, CP 5410 and CP 5430-1.
Define the arguments of the BDR, SET, ST, SDT 1 and SDT 2 basic parameters as shown in Table 1-4:

- for the S5-95U in DB1
- for the CP 5410
- for the CP 5430-1

Table 1-4. Defining the Arguments of the Basic Parameters for the S5-95U in Conjunction with the CP 5410 and/or CP 5430-1

Example: Define the baud rate as 187.5 kbaud in DB1. This gives the other basic parameters as follows: SET 1 ST 380 SDT 112 SDT 2150.

Communications with Other SIMATIC Devices, e.g. the CP 5412 or CP 5430-0

You must set the same basic parameters BDR, SET, ST, SDT 1 and SDT 2 for the S5-95U and the other SIMATIC device.
Define the arguments of the BDR, SET, ST, SDT 1 and SDT 2 basic parameters as shown in Table 1-5:

- for the S5-95U in DB1
- for the other SIMATIC device

Table 1-5. Basic Parameter Arguments for the S5-95U in Conjunction with
Other SIMATIC Devices

	9.6	19.2	$93,5$	$18 \geqslant 5$	500	1500
SET	10	15	45	80	80	80
ST	100	170	240	400	1000	3000
SDT 1	12	15	45	80	80	150
SDT 2	60	65	200	360	360	980

Example: Define the baud rate as 187.5 kbaud in DB1. This gives the other basic parameters as follows: SET 80 ST 400 SDT 180 SDT 2360.

1.5 Types of Data Transmission for the S5-95U

There are different types of data transmission that allow for an optimal adaptation to specific needs.
The types of data transmission can be divided into two groups:

- Procedure for communications between active station and active station
- Standard connection
- PLC to PLC connection
- Cyclic I/O (only possible between S5-95Us)
- Layer 2 access
- Procedure for communications between an active station and a passive station
- Cyclical I/O
- Standard connection (broadcasting from active to passive nodes only)
- Layer 2 access

Figure 1-7. Data Transmission Types

The types of data transmission differ from each other by the following:

- The management
- The communications process (implicit/explicit communications*)
- The stations that are to be connected (active/passive stations)
- The kind of data that is to be transmitted or received (e.g. single bytes or data blocks)

Depending on your application, you need to decide on the following issues:

- Should the S5-95U be a passive or an active station on the bus?
- Which type of data transmission do I select?

You will find the answers to these questions below.

* implicit communication: The communication is automatic; it is not triggered in the user program. explicit communication: The communication timing is triggered in the user program.
- Is my S5-95U to be a passive or active station on the LAN?

An active station receives the token (permission to send). When they have the token, active stations can send data to other stations.
A passive station does not receive the token. Consequently, passive stations can only exchange data with an active station when they are requested to do so by that station.

An S5-95U should, if possible, be a passive station on the LAN since token management on an active station takes time and increases the LAN's response time.

- Which type of data transmission should I choose?

You will find the answer to this question

- in Table 1-6 (recommended types of data transmission)
- in Table 1-7 (comparison of the characteristics of the various types of data transmission)
- in Tables 1-8 and 1-9 (which type of data transmission is to be recommended for which station)

Table 1-6. Recommended Types of Data Transmission

rype or bata Transmission.....	【وeneratl\|
Standard connection	Porting existing programs from SINEC L1 to SINEC L2.
PLC-to-PLC connection	Communications between two active stations.
Cyclic I/O	Communications between active and passive stations.
Layer 2 access	Communications with non-SIMATIC devices which cannot exchange data via the standard connection, PLC-to-PLC connection and cyclic 1/O.

Table 1-7 lists the characteristics of the various types of data transmission to help you select the best type for your specific application.

Table 1-7. Characteristics of the Various Types of Data Transmission

Charactertstics		Standar	PLCctoric	eyclielo(zel)	Layer 2 Access"
Com. mum. ca. lioms.	explict	Via send and receive mailboxes	Via L2-SEND FB and L2 RECEIVE FB		Via L2-SEND FB and L2-RECEIVE FB
	आmplell			Automatic, without being initiated by the user program	
Amoumiot data		1 to 242 bytes per job	1 to 242 bytes per job	ZP master: Input range 0 to 128 DW Output range 0 to 128 DW ZP slave: Input range 0 to 121 DW Output range 0 to 121 DW	0 to 242 bytes per job
Send and recelve data naybe located		In the flag area or in the data area	In the flag area or in the data area	In the data area	In the flag area or in the data area
Parallel processing ot several send and recelve. 10bs		No	Yes; one send job and one receive job in parallel per communications partner	Non-applicable*	Yes; 23 random jobs in parallel

* Since no job is requested by the user in the case of implicit communications
\qquad

Table 1-8 contains the following for S5-95Us as active stations:

- Recommendations for the choice of type of data transmission to suit the communications partner
- The data transmission modes with which broadcasting and multicasting are possible.

Table 1-8. Types of Data Transmission for S5-95Us as Active Stations

Active. S5 95 Ils\%		Standard eommechon	P! \& tople Commeclion		quyert acess
		yes	yes	possibly	no
		no	no	yes	no
		no	possibly	possibly	yes
		no	no	yes	yes
Sionicastimg Send Pecente		yes	no	no	no
		yes	no	no	no
		no	no	no	yes
		no	no	no	yes

[^0]\qquad

Table 1-9 contains the following for $55-95$ Us as passive stations:

- Recommendations for the choice of type of data transmission to suit the communications partner
- The types of data transmission with which broadcasting and multicasting are possible.

Table 1-9. Types of Data Transmission for S5-95Us as Passive Stations

Phsilasjghlis		Standind Sonnection	P4\% 10 P\& Connection		4aye»2 Access
Communca. loarswith Bioadcastig Milleastirg	anactue $\$ 5951$	no	no	yes	yes
		no	no	no	no
	an active oevice ot athemmanufacture	no	no	yes	yes
	a passtye device or ofhermanulacture	no	no	no	no
	S	no	no	no	no
		yes	no	no	no
	Send	no	no	no	no
		no	no	no	yes

* All types of data transmission (standard connection, PLC-to-PLC connection, cyclic I/O and layer 2 access) can be programmed/used in parallel.

Selecting the Types of Data Transmission to Suit the Hardware Configuration

Except in a few cases, you will still not be able to make a final decision as to which type of data transmission to use based solely on the information found in Tables 1-8 and 1-9: if, for example, the amount of data to be expected is not clear.

Typical partial configurations of a SINEC L2 network are illustrated in Figures 1-8 and 1-9.

These partial configurations correspond to the situations encountered most frequently in the industry. They are presented here according to the frequency of their occurrences (high to low). In the chapters dealing with the individual types of data transmission (see chapters 4, 6, 7 and 8), these typical partial configurations are the basis for the examples for assigning parameters and programming with the S5-95U.

1. Communications between two S5-95Us

PLC-to-PLC connection

Figure 1-8. PLC-to-PLC Connection between Active S5-95Us

Cyclic I/O (ZP)

Figure 1-9. Cyclic I/O between an Active and a Passive S5-95U

Standard connection (SC)

To be recommended only if existing programs are to be ported from SINEC L1 to SINEC L2.

Passive stations

Figure 1-10. Standard Connection for Porting Programs from SINEC L1 to SINEC L2
2. Communications between an S5-95U and a Device of Other Manufacture (station that is not an S5-95U)

PLC-to-PLC connection
Active
stations

Bus

Passive
stations

Figure 1-11. PLC-to-PLC Connection between an Active CP 5430 and an Active S5-95U

Cyclic I/O (ZP)

Figure 1-12. Cyclic I/O between an Active CP 5430 and a Passive S5-95U

Layer 2 access
Active stations

Bus

Passive stations

Figure 1-13. Layer 2 Access between an Active CP 5410 and an Active S5-95U

1.6 Physical Bus Characteristics and Installation Techniques for the SINEC L2 Network

You can connect the S5-95U programmable controllers to SINEC L2 networks using two different types of transmission technologies:

- RS 485 transmission technology
(advantages: interference-proof due to difference signals, and economical)
- Fiber optic transmission technology
(advantages: no EMC problems, electrical isolation between the stations, larger network expansion capability as with the RS 485)

Refer to the SINEC L2/L2FO Network Manual for detailed information about transmission technologies.

1.6.1 RS 485 Transmission Technology

Physical bus characteristics and related distances

A SINEC L2 network consists of one or more bus segments.
Figure $1-14$ shows a SINEC L2 segment with RS 485 technology.

SINEC L2 bus connector (terminating resistor connected)

Figure 1-14. SINEC L2 Bus Segment with RS 485 Technology
You can link the bus segments by repeaters. Figure 1-15 shows a SINEC L2 network with RS 485 technology. The terminology is explained later on.

PLC	e.g., S5-95U programmable controller
\square	SINEC L2 bus connector
SINEC L2 bus connector with switched-on terminating resistor	
RS 485 repeater with switched-on terminating resistor	

Figure 1-15. SINEC L2 Network with RS 485 Technology
The conditions for installing the network are as follows:

- You can connect a maximum of 127 stations (TLN 0 is reserved for a programmer).
- A maximum of 32 bus loads is permitted per segment (a bus load is either a station or a repeater).
- You can connect a maximum of 7 repeaters in series.

Table 1-7 shows the possible distances between stations calculated on the basis of the expansion of a bus segment and of the condition specified above that a maximum of 7 repeaters is allowed between two stations.

Table 1-10. Distance Table for RS 485 Technology

Baud Ratein Kbilsis	Number of Segments Commected in Serles							
	1	2	3	4	5	©	\%	8
96.519293.75	1.2 km	2.4 km	3.6 km	4.8 km	6.0 km	7.2 km	8.4 km	9.6 km
1875	1.0 km	2.0 km	3.0 km	4.0 km	5.0 km	6.0 km	7.0 km	8.0 km
500	0.4 km	0.8 km	1.2 km	1.6 km	2.0 km	2.4 km	2.8 km	3.2 km
1500	0.2 km	0.4 km	0.6 km	0.8 km	1.0 km	-	-	-

4 Caution

In extensive networks, the potential difference between two stations may be more than $\pm 7 \mathrm{~V}$. In such a case, take the necessary equipotential bonding measures, otherwise the SINEC L2 interface will be destroyed.

Installation Techniques

SINEC L2 Bus Connector
The SINEC L2 bus connector can be used to connect the two-wire, shielded bus cable with the S5-95U. It is the most economical and the easiest to install of the various connectors. The bus connector is available in the following two designs:

- L2 bus connector with degree of protection IP 20 without connector for a programmer (shown in Figure 1-16)
- L2 bus connector with degree of protection IP 20 with connector for a programmer

Figure 1-16. L2 Bus Connector with Degree of Protection IP 20 without Connector for a Programmer

Bus Terminals

The bus terminal with RS 485 transmission technology has the same function as the SINEC L2 bus connector. It is an alternative to the SINEC L2 bus connector. The only difference is the installation technique. The bus terminal snaps onto the mounting rail, thus providing tension release.

Table 1-11. SINEC L2 Bus Terminals

Bus.	Cablesenglimmat)	Oroergunder
RS 485	1.5 / 4.9	6GK1 500-0AA00
	3.0 / 9.8	6GK1 500-0AB00
RS 485/PG	1.5 / 4.9	6GK1 500-0DA00

Bus Cable for SINEC L2

You need a two-wire, shielded, twisted cable as bus cable, that has the technical specifications listed in Table 1-9.

Table 1-12. Technical Specifications of the Bus Cable

Feame	Specilication
Surge impedance	approx. 135 to 160 ($f=3-20 \mathrm{MHz}$)
Loop resistance	115 /km
Effective capacitance	$30 \mathrm{nF} / \mathrm{km}$
Attenuation	$0.9 \mathrm{~dB} / 100$ ($\mathrm{f}=200 \mathrm{kHz}$)
Permissible core cross section	$0.3 \mathrm{~mm}^{2}$ to $0.5 \mathrm{~mm}^{2}$
Permissible cable diameter	$8 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

The SINEC L2 standard cable matches these specifications (order number for indoor bus cable: 6XV1 830-0AH10, for buried bus cable: 6XV1 830-3AH10).

RS 485 SINEC L2 Repeater
Use the RS 485 SINEC L2 Repeater for the following tasks:

- To link individual SINEC L2 bus segments
- To add branches to your network
- To regenerate electrical signals on the network cables.

Each repeater that is connected to a bus segment limits the maximum possible number of stations (32) by one for this bus segment. For example, when connecting two repeaters to a segment, you can connect only 30 stations.

Two types of RS 485 SINEC L2 repeaters are available:

- For nominal voltage operation 24 V DC with external power supply (degree of protection IP 20)
- For nominal voltage operation 24 V DC with external power supply (degree of protection IP 65)

1.6.2 Fiber Optics Transmission Technology

Physical Bus Characteristics

Figure 1-17 shows an example of a SINEC L2FO network configured as a fiber optic star network with cascading stars. The star centers are active star couplers AS 501.

The technical terms will be explained in the section that follows.

Figure 1-17. SINEC L2 Network with Fiber Optic Cable

You can also link two S5-95U programmable controllers point to point directly via a fiber optic cable, i.e., without using an active star coupler AS 501, as shown in Figure 1-18.

Figure 1-18. Point to Point Link via a Fiber Optic Cable

The conditions for installing the network are as follows：
－You can connect a maximum of 127 stations（TLN 0 is reserved for a programmer）．
－You can connect a maximum of 16 active star couplers between two stations．

Table 1－13 shows the possible distances between to stations calculated on the basis of the values specified in Figure 1－17 and the condition specified above that a maximum of 16 active star couplers is allowed between two stations．

Table 1－13．Distance Table for Glass Fiber Optic Cable Technology

Baila fate In kbitss									
	${ }_{F}^{*}$	\＃\＃\＃\＃\＃s	3						
％／2m	\％／4．								
	1.4 km	2.8 km	4.2 km	5.6 km	7.0 km	8.4 km	9.8 km	\ldots	23.8 km
500\％月月朋朋／月	1.4 km	2.8 km	4.2 km	5.6 km	7.0 km	8.4 km	－		－
	1.4 km	2.8 km	4.2 km	－	－	－	－		－

Installation Techniques

SINEC L2FO Bus Terminal SF－B／PF－B
The SINEC L2FO Bus Terminal SF－B／PF－B converts electrical signals into optical signals for the L2FO network and vice versa．

You can plug the optical bus terminal directly onto the 9－pin D－type female connector of the S5－95U．
There are two different versions for different fiber optic cable media：
－The SINEC L2FO bus terminal SF－B for glass fiber optic cables
－The SINEC L2FO bus terminal PF－B for plastic fiber optic cables

SINEC L2FO bus terminal SF－B

SINEC L2FO bus terminal PF－B

Figure 1－19．SINEC L2FO Bus Terminal SF－B／PF－B

SINEC L2FO Active Star Couplers AS 501 A and 501 B

Due to the physical properties of fiber optic cables, you must configure the SINEC L2FO as a star network. The central point of this star is the SINEC L2FO active star coupler AS 501 A or AS 501 B.

Use an active star coupler for the following tasks:

- To regenerate the optic level
- To add branches to your SINEC L2FO network (star points)

Design of the SINEC L2FO active star coupler:

- 16 plug-in modules maximum
- OPM module (Optical Plastic fiber one-port Module)
- OSM (Optical Silica fiber one-port Module)

The active star coupler is available in two versions:

- AS 501 A with single power supply $120 \mathrm{~V} / 240 \mathrm{~V}$ AC
- AS 501 B with redundant power supply 120 V/240 V AC

Figure 1-20. SINEC L2FO Active Star Coupler AS 501

1.6.3 Mixed Configuration of RS 485 and Fiber Optics Transmission Technology

You can configure networks with combined RS 485 and fiber optics transmission technologies by using the SINEC L2FO repeater adapter.
Figure 1-21 is an example of this type of configuration.

Figure 1-21. Mixed Configuration with RS 485 and FO Transmission Technology

You can also link two SINEC L2 networks of the RS 485 technology type directly via a fiber optic cable without using an active star coupler as shown in Figure 1-22.

Figure 1-22. Two SINEC L2 Networks of the RS 485 Technology Linked via Fiber Optic Cable

SINEC L2FO SF Repeater Adapter for L2 Repeater

The SINEC L2FO SF repeater adapter converts electrical signals of the network into optical signals for the L2FO network.

Design of the SINEC L2FO SF repeater adapter (see also Figure 1-23):

- You can plug the SF repeater adapter directly onto the 15-pin D-type female connector of an L2 repeater
- Connection only to a glass fiber optic cable

Figure 1-23. SINEC L2FO SF Repeater Adapter for L2 Repeater

2 Installation Guidelines

2.1 Basic Configuration $\ldots \ldots \ldots$.......................... 2 -
2.2 Installing a SINEC L2 Bus Segment 2-2
2.3 Linking Bus Segments with the L2 Repeater 2-4
2.3.1 Electrical Design of the SINEC L2 Repeater RS 485 2-4
2.3.2 Connecting the Supply Voltage ... 2 - 5
2.3.3 Connecting Bus Segments .. 2 - 6
2.4 Routing Cables .. 2-8

Figures

2-1. SINEC L2 Components 2-1
2-2. SINEC L2 Bus Connector with Degree of Protection IP 20 2-2
$2-3$. Cutting the Bus Cable, Stripping the Insulation, and Connecting the SINEC L2 Bus Connector 2-3
2-4. Circuit diagram of the SINEC L2 Bus Connector 2-3
2-5. Voltage Potentials for the SINEC L2 Repeater RS 485 2-4
2-6. Connecting the Supply Voltage to the L2 Repeater 2-5
2-7. Connecting Two Bus Segments to Screw-Type Terminals of the L2 Repeater (1) 2-6
2-8. Connecting Two Bus Segments to Screw-Type Terminals of the L2 Repeater (2) 2-7
Tables
2-1. Limiting Conditions for Routing Cables Indoors 2-8

2 Installation Guidelines

This chapter contains suggestions and rules for configuring and installing the S5-95U as a SINEC L2 bus station. The S5-90U/S5-95U System Manual discusses installation guidelines for all versions of the S5-95U, such as mechanical installation and wiring. You should use this chapter together with the installation guidelines discussed in the system manual.

Note

Refer to the SINEC L2/L2FO Network Manual for additional information about installation techniques.

2.1 Basic Configuration

Figure 2-1 illustrates the main components of a SINEC L2 in RS 485 and S5-95U installation technology. The main components are as follows:

- The S5-95U programmable controllers with a SINEC L2 interface
- The SINEC L2 bus connector with the bus cable

S5-95U

Figure 2-1. SINEC L2 Components

Note

The bus terminal can replace the bus connector (See section 1.6.1). All of the references in section 2.2 are to the bus connector because it is the most economical and simplest connection method.

2.2 Installing a SINEC L2 Bus Segment

This section explains how to install a SINEC L2 bus segment. A bus segment consists of the following components:

- The bus cable
- The SINEC L2 bus connector or the SINEC L2 RS 485 bus terminal
- The SINEC L2 station, e.g., an S5-95U programmable controllers with SINEC L2 interface

Mounting the Bus Cable on the SINEC L2 Bus Connector

You must mount the bus cable on the SINEC L2 bus connector to connect an S5-95U to the SINEC L2 bus.

Perform the following steps to establish the connection.
Lay out the cable and cut it.
Open the connector housing by loosening the housing screws.
Remove the housing cover.
Mount the bus cable as shown in Figure 2-3.
If required, switch on the terminating resistor.
Close the connector housing.
Now you can plug the SINEC L2 bus connector to the SINEC L2 interface of the S5-95U.
You can remove the connector without interfering with bus operation.

Housing screw

Figure 2-2. SINEC L2 Bus Connector with Degree of Protection IP 20

Note

When mounting the bus cable onto the SINEC L2 bus connector, make sure the data line connected to terminal A of one bus connector (Figure 2.3) is also jumpered with terminal A of the other.
Analogously, the B terminals of the two bus connectors must also be interconnected
(Figure 2.3).

SINEC L2 Bus Connector in the Bus Segment

Stripping the bus cable

Mounting the bus cable onto the SINEC L2 bus connector

Switch position "OFF" (=terminator not connected)

SINEC L2 Bus Connector at the Begining or End of a Segment

Stripping the bus cable

Mounting the bus cable onto the SINEC L2 bus connector

Switch position "ON" (terminator connected)

Figure 2-3. Cutting the Bus Cable, Stripping the Insulation, and Connecting the SINEC L2 Bus Connector

9-pin submin. D connector (pin assignment: see Figure 3-3, chap. 3.1)

Figure 2-4. Circuit diagram of the SINEC L2 Bus Connector

2.3 Linking Bus Segments with the L2 Repeater

2.3.1 Electrical Design of the SINEC L2 Repeater RS 485

Voltage Potentials for a Correct EMC Installation of the L2 Repeater

- Bus segment 1 and bus segment 2 are electrically isolated from each other.
- Bus segment 2 and the power supply have a common reference potential.
- The reference potential (M terminal) and the protective ground conductor (PE terminal) are not connected to one another.
- All the shield clamps are connected to the protective ground conductor (PE terminal) at the factory. The clamps for the power supply and bus segment 2 are connected internally to the PE terminal. The connection between bus segment 1 and the PE terminal can be removed (remove connecting plate between bus segments 1 and 2).
- Terminal C ("C" stands for common) is not needed to connect the two-wire SINEC L2 bus cable.

Figure 2-5. Voltage Potentials for the SINEC L2 Repeater RS 485

Grounding Methods

Installation on a standard mounting rail	Ground the standard mounting rail
Installation on a metal plate of a cabinet or on a	Connect the protective ground clamp of the wall
	repeater to the grounding rail using the shortest cable possible (cross section $1.5 \mathrm{~mm}^{2}$, approximately AWG 16)

Reasons for Removing the Connecting Plate

Connecting both ends of the shield of the SINEC L2 bus cable to protective ground provides good noise suppression for high frequency ranges. It is the recommended method.

Note

Potential differences between the grounding points can cause an equalizing current to flow on the shield connected on both sides that exceeds the capacity of the shield. In that case, provide an equipotential bonding line.

Connecting only one end of the shield to protective ground should be the exception. It provides damping only of low-frequency noises. Choose this method only if you cannot provide an equipotential bonding line.

Remove the connecting plate between the shield clamps of segments 1 and 2. This opens the connection to the protective ground conductor.

Warning

When the connecting plate between segment 1 and segment 2 is removed, electric shock-hazard voltages 40 V can be present at the cable clamp of bus segment 1 . Make sure you provide appropriate contact protection.

2.3.2 Connecting the Supply Voltage

To connect the supply voltage (+24 V DC) to the screw-type terminal block, use a two-wire or three-wire, shielded cable and prepare the shielding as follows (see Figure 2-6):

- Remove the insulation completely.
- Connect the shielding to the shield clamp of the repeater using the broadest connection surface as possible.
- Connect the shielding at the power supply end to the protective ground conductor.

Figure 2-6. Connecting the Supply Voltage to the L2 Repeater

2.3.3 Connecting Bus Segments

This section explains how you connect bus segments to the L2 repeater. Note that you must terminate a segment at both ends (i.e., when the terminators are connected, the bus is terminated).

Repeater at Segment End

Figure 2-7 shows the connection of two segments to a repeater.

Segment 1

Figure 2-7. Connecting Two Bus Segments to Screw-Type Terminals of the L2 Repeater (1)

Repeater in Segment

PLC
e.g., S5-95U programmable controller
\square
SINEC L2 bus connector (terminating resistor connected)
\square SINEC L2 bus connector (terminating resistor disconnected)Repeater with one terminating resistor connected

Figure 2-8. Connecting Two Bus Segments to Screw-Type Terminals of the L2 Repeater (2)

2.4 Routing Cables

Routing the Bus Cable

When routing the bus cable indoors, observe the limiting conditions listed in Table 2-1 ($\mathrm{d}_{\mathrm{O}}=$ outer diameter).

Table 2-1. Limiting Conditions for Routing Cables Indoors

Feature	limimg comilion
Bending radius when bending once	80 mm (3.1 in.) (10 d_{o})
Bending radius when bending more than once	160 mm (6.3 in.) (20 do)
Permissible temperature range for routing cables	$-5^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}\left(+23^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
Temperature range for storing and operating	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-22{ }^{\circ} \mathrm{F}\right.$ to $\left.+149{ }^{\circ} \mathrm{F}\right)$

Do not twist, stretch, or crush cables when routing them.
When routing the bus cable outdoors, observe the general regulations regarding lightning and grounding.

Lightning protection

If cables for SIMATIC S5 devices are to be laid outdoors, both indoor and outdoor lightning protection should be provided.

Outside buildings, cables should be laid

- in steel conduits grounded at both ends or
- in concrete cable ducts with continuous armouring.

Install these elements where the cable enters the building.

Note

Look at each system individually to determine the measures necessary to protect it against lightning. Please address your questions to your local Siemens representative.

3.1 Design and Mode of Operation of the Programmable Controller 3-2
3.2 START-UP Sequence 3-4
3.3 Starting Up a System 3-5
3.3.1 Suggestions for Configuring and Installing the Equipment 3-5
3.3.2 Prerequisites for Starting Up the S5-95U as a SINEC L2 Station 3-6
3.3.3 System Startup Diagnostics and Procedures 3-7
3.4 FMA Services 3-10
3.4.1 Principle of Operation 3-10
3.4.2 The Types of FMA Services 3-12
3.4.3 Assigning Parameters in DB1 for the FMA Services 3-13
3.4.4 Managing of all FMA Services with FB222 3-14
3.4.5 Reading Out a List of All Active Stations on the Network (LAS_LIST_CREATE) 3-17
3.4.6 Reading the Status of Another Station (FDL_STATUS) 3-19
3.4.7 Reading Updated Bus Parameters (READ_VALUE) 3-21
3.4.8 Reading Out Available Token Hold Time When Receiving the Token (TIME_TTH_READ) 3-24
3.4.9 Reading Out the Event Message (MAC_EVENT) 3-26
gigures
3-1. S5-95U LEDs, Controls, and Interfaces of the S5-95U 3-2
3-2. Operating Principle of an S5-95U with the SINEC L2 Interface 3-3
3-3. Pin Assignment for the SINEC L2 Interface of the S5-95U 3
3-4. \quad Start-Up Sequence at Power ON/Switch from STOP to RUN 3-4
3-5. \quad Connecting the L2 Interface of the S5-95U to the Local Area Network 3-6
3-6. Checklist Flowchart for Starting Up a System 3-9
3-7. Principle of Operation of the Programmable Controller with SINEC L2 Interface 3-10
3-8. \quad Structure of the FMA Headers for Request and Confirmation 3-11
3-9. DB1 with Parameter Settings for All FMA Services 3-13
3-10. Structure of the LAS_LIST_CREATE Request and Confirmation Blocks 3-17
3-11. LAS LIST CREATE Status Bytes 3-18
3-12. Structure of the FDL_STATUS Request and Confirmation Blocks 3-19
3-13. Status Byte of FDL_STATUS 3-20
3-14. Structure of the READ_VALUE Request and Confirmation Blocks 3-21
3-15. Structure of the TIME_TTH_READ Request and Confirmation Blocks 3-24
3-16. Sequence Principle of FMA service MAC EVENT 3-26
3-17. Structure of the MAC EVENT Indication Block 3-26
rabies
3-1. Interpretation of the BF LED Display 3-7
3-2. FMA Services Possible with the L2 Interface of the S5-95U 3-12
3-3. Characteristics of FMA Services 3-12
3-4. DB1 Parameters for the FMA Services 3-13
3-5. link_status Messages for the LAS_LIST_CREATE Confirmation 3-17
3-6. link_status Messages for the FDL_STATUS Confirmation 3-19
3-7. link_status Messages for the READ_VALUE Confirmation 3-21
3-8. Bus Parameter Block Values for a READ_VALUE Confirmation 3-22
3-9. link_status-Meldung für TIME_TTH_READ-Confirmation 3-24
3-10. Event Parameter Message in Indication Block 3-27

3 Start-Up, Tests, and Diagnostics

This chapter describes how to start up an S5-95U programmable controller as a SINEC L2 local area network station.

The first part of this chapter provides information on design and operating mode of the S5-95U with SINEC L2 interface. It also answers the following questions:

- What is the start-up sequence of the S5-95U with SINEC L2 interface?
- How do I start up the programmable controller as a SINEC L2 station?
- What tests should I conduct during start-up?

The second part of this chapter describes how errors are indicated on the programmable controller and which service and diagnostic functions (FMA services) are provided. Each FMA service is described individually and is followed by programming examples.

3.1 Design and Mode of Operation of the Programmable Controller

Figure 3-1 shows all the displays, operator controls and interfaces of the S5-95U (Order No. 6ES5095-8MB@

(1) Battery compartment
(2) Front panel connector
for digital inputs (1 32.0 to 133.7) and for digital outputs (Q 32.0 to Q 33.7)
(3) Battery low LED
(4) ON/OFF switch
(5) LED display for digital inputs and outputs
(6) Terminals for connecting the power supply

Cable connector for S5-100U modules
8) Interface for analog inputs (IW 40 to IW 54) and for analog outputs (QW 40)
(9) Interface for SINECL2 bus
(10) SINECL2 bus fault LED
(11) RUN/STOP LEDs: The green LED indicates the "RUN" mode, the red LED indicates the "STOP" mode.
(12) RUN/STOP/COPY switch
(13) Receptacle for an EPROM or EEPROM memory submodule
(14) Interface for a PG, PC, OP or SINEC L1 bus
(15) interface for interrupt inputs (1 34.0 to 34.3) and for counter inputs (IW 36, IW 38)

Figure 3-1. S5-95U LEDs, Controls, and Interfaces of the S5-95U

Operating the Programmable Controller with a SINEC L2 Interface
Figure 3-2 shows the operating principle of a programmable controller with the SINEC L2 interface.
Programmable controller
SINEC L2 interface

Figure 3-2. Operating Principle of an S5-95U with the SINEC L2 Interface

Communications Processor

The communications processor handles the frame traffic via the SINEC L2 network in parallel with the control processor.

The communications processor has the following tasks:

- Receive frames that are used for network management, e.g., token frames, via SINEC L2
- Interpret the frame
- Trigger adequate reactions
- Receive frames that contain data via SINEC L2
- Interpret the frame
- Store the data in STEP 5 data elements
- Transmit frames that are used for network management, e.g., token frames, via SINEC L2
- Transmit frames that contain data via SINEC L2
- retrieve the data from STEP 5 data elements
- pack the data into frames and transmit

SINEC L2 Interface

9-pin subminiature D female connector as specified in the PROFIBUS Standards.

Figure 3-3. Pin Assignment for the SINEC L2 Interface of the S5-95U

3.2 START-UP Sequence

In the START-UP sequence, the communications processor is activated before the START-UP OBs are processed, as illustrated in Figure 3-2.

1 This is the procedure if the programmable controller was in the "RUN" mode when the power went off, if the mode switch was still on RUN when the power was restored, and if the battery was inserted. If the battery was not inserted, you must insert a memory submodule containing the valid blocks.

Figure 3-4. Start-Up Sequence at Power ON/Switch from STOP to RUN

When the S5-95U is in the STOP mode, only the cyclical I/O (ZP) and the programmer functions are supported.
When the mode is switched from STOP TO RUN after a modification of the SL2 parameters in DB1, the status bytes for SINEC L2 communication are reset on the CPU side, and running jobs are deleted (communications processor is reset)
When the mode is switched from STOP TO RUN without a modification of the SL2 parameters in DB1, the status bytes for SINEC L2 communication remain on the CPU side, and processing of running jobs continues.

3.3 Starting Up a System

The following section contains suggestions for configuring and starting up a system containing programmable controllers.

3.3.1 Suggestions for Configuring and Installing the Equipment

The equipment is often used as a component in a larger system. The suggestions contained in the following warning are intended to help you install your programmable controller safely.

Warning

- Adhere to any safety and accident-prevention regulations applicable to your situation and system.
- If your system has a permanent power connection (stationary equipment) that is not equipped with an isolating switch and/or fuses that disconnect all poles, install either a suitable isolating switch or fuses in the building wiring system. Connect your system to a ground conductor.
- Before start-up, if you have units that operate using the main power supply, make sure that the voltage range setting on the equipment matches the local main power voltage.
- When using a 24-V supply, make sure you provide proper electric isolation between the main supply and the $24-\mathrm{V}$ supply. Use only power supplies manufactured according to IEC 364-4-41 or HD 384.04.41 (VDE 0100, part 410).
- Fluctuations or deviations of the supply voltage from the rated value may not exceed the tolerance limit specified in the technical data. If they do, functional failures or dangerous conditions can occur in the electronic modules or equipment.
- Take suitable measures to make sure that programs that are interrupted by a voltage dip or power failure resume proper operation when the power is restored. Make sure that dangerous operating conditions do not occur even momentarily. If necessary, force an EMERGENCY OFF.
- EMERGENCY OFF devices must be in accordance with EN 60204/IEC 204 (VDE 0113) and be effective in all operating modes of the equipment. Make certain to prevent any uncontrolled or undefined restart when the EMERGENCY OFF devices are released.
- Install power supply and signal cables so that inductive and capacitive interference can not affect the automation functions.
- Install your automation system and its operative components so as to prevent unintentional operation.
- Automation equipment can assume an undefined state in the case of a wire break in the signal lines. To prevent this, take the proper hardware and software safety measures when linking the inputs and outputs of the automation equipment.

3.3.2 Prerequisites for Starting Up the S5-95U as a SINEC L2 Station

We assume that the S5-95U is to be connected as a station to an already existing SINEC L2 local area network.

Minimum hardware requirement:

- One S5-95U programmable controller
- One EPROM/EEPROM memory submodule or a back-up battery
- One bus connector or one bus terminal
- One programmer with monitor

Figure 3-5 shows the location of the connectors on the S5-95U.

Figure 3-5. Connecting the L2 Interface of the S5-95U to the Local Area Network

Parameter Assignments Required in DB1:

- You have set the basic parameters in DB1 (see section 1.4).
- You have set the parameters for the desired data transmission type(s). Section 1.5 provides information for the selection of the data transmission types. The specific chapters provide information for assigning parameters for each specific data transmission type (Standard Connection: chapter 4; PLC to PLC: chapter 6; Cyclic I/O: chapter 7; layer 2 accesses: chapter 8).

3.3.3 System Startup Diagnostics and Procedures

BF LED fault display

The BF (Bus Fault) LED lights up when

- the firmware of the S5-95U detects a fault, or
- if the communications processor integrated in the S5-95U is not activated.

Table 3-1. Interpretation of the BF LED Display

Bry	Meaming	cause	cortected bBils inanstered lo theptes.
Lights up	Communications processor is not activated	There is no SL2 parameter block in DB1 or it is enclosed by comment characters (\#)	after STOP-RUN or POWER OFF - POWER ON on the PLC
	Communications processor has been assigned the wrong parameters PLC remains in STOP mode	SL2 parameter block in DB1 contains errors	after POWER OFF - POWER ON on the PLC
	LAN bus fault (can only occur if the $\mathrm{S} 5-95 \mathrm{U}$ is connected to the LAN)	Fatal internal fault or basic parameters are not consistent over the entire network, e.g. TLN (station address) has been allocated twice (LAN bus fault Table 3-10)	after POWER OFF - POWER ON on the PLC

Note

If you start up the S5-95U with the default DB1, the communications processor will not be activated and the BF LED will light up.

Test Possibilities during Start-Up

The S5-95U provides the two following types of diagnostics functions:

- Functions for the general diagnostics of the SINEC L2 bus
- Functions for diagnostics of the specific data transmission types (standard connection, PLC-toPLC, cyclic I/O, layer 2 services)

The functions for diagnostics of the different data transmission types are explained in the corresponding chapters.
The functions for the general diagnostics of the SINEC L2 bus are explained in the following:

List All the Operative Active Stations of the Network
 FMA service LAS_LIST_CREATE (see section 3.4.5)

Find Out the Status of a Remote Station

FMA service FDL_STATUS (see section 3.4.6)
You can find out whether another station is operative and passive or active.

Calculate the Remaining Token Hold Time When Receiving the Token

FMA service TIME_TTH_READ (see section 3.4.8)
You can find out whether the set target rotation time is optimal (TRT parameter in DB1).

Locate Errors

FMA service MAC_EVENT (see section 3.4.9)
Examples of errors that can be located using this service:

- Two stations have the token (double token).
- A station address has been assigned twice.
- There is a short-circuit on the bus cable.

Startup Procedure for the SINEC L2 station

Proceed as follows to start up the SINEC L2 station:
Start up the PLC without the SINEC L2 interface (as described in the S5-90U/S5-95U System Manual, chapter 4).
Start up the SINEC L2 interface as shown in the flowchart of Figure 3-6.
Prerequisite: The SINEC L2 bus connector is not plugged into the interface port on the PLC.

Figure 3-6. Checklist Flowchart for Starting Up a System

3.4 FMA Services

This section provides you with the following information:

- What is meant by FMA services
- Why FMA services are used
- Which FMA services are relevant for the L2 interface of the S5-95U
- How FMA services are called up

The prerequisites for understanding this section are:

- Knowledge of STEP 5 programming
- Knowledge of how to handle the L2-SEND and L2-RECEIVE function blocks (see chapter 5)

These special functions give you access to the management services. FMA stands for Field bus MAnagement. FMA services serve to monitor both the network and the local stations.
The FMA services make it possible to diagnose all of the network stations.
The communications processor evaluates the data collected from the stations.

3.4.1 Principle of Operation

- A service request is sent to the communications processor by means of integral function block FB L2-SEND (FB252) .
- If the FMA service requests information from another station (only FMA service FDL_STATUS)
- The communications processor scans the status of the other station .
- The other stations replies .
- The system waits for a reply (confirmation) to arrive from the communications processor. In the meantime the control processor processes the user program. This way the waiting time does not cause any additional cycle delay.
- The user program indicates that a confirmation has arrived from the communications processor.
- The confirmation is fetched by means of integral function block FB L2-RECEIVE (FB253) .

S5-95U (L2 station)

Figure 3-7. Principle of Operation of the Programmable Controller with SINEC L2 Interface

An FMA request consists of an 8 -byte header. The confirmation, depending on the service, consists of a maximum of 58 bytes. Bytes 0 to 7 are assigned to the confirmation header; the requested data start with byte 8.
Figure 3-8 shows the structure of a service request and of a confirmation. The designations in the header blocks are taken from the PROFIBUS Standards.

The FMA headers contain the following parameters. Not all parameters are completely evaluated for all functions.

Service Request

Confirmation
Byte

0	com_class FMA_Confirmation $=01_{\mathrm{H}}$ (acknowledgment from firmware following FMA_Request)
1	user_id ID assigned in the FMA_Request
2	service_code Type of service provided by the layer 2 firmware
3	link_status OK message, or error message; indicates the success or failure of the previous service request
4	irrelevant
	irrelevant
6	rem_add_station* Address of destination station (hexadecimal)
7	irrelevant
8	Data
57	

* Required only by FMA service FDL_STATUS

Figure 3-8. Structure of the FMA Headers for Request and Confirmation

Storing the Request Header and the Confirmation Data

Store the transmit data and the received data in the flag area or the data area.
The maximum length of the confirmation (header + data) is 58 bytes. Because of the rather large maximum amount of data contained in a confirmation, we recommend choosing only the data area. We also recommend storing request and confirmation in the same data block.

3.4.2 The Types of FMA Services

The L2 interface of the S5-95U permits only the FMA services listed in Table 3-2.
Table 3-2. FMA Services Possible with the L2 Interface of the S5-95U

\& 4 HASService	
LAS_LIST_CREATE	Read out the list of all the active stations on the network.
FDL_STATUS	Read the status of another station (e.g., "Station is passive"; or "Station is active and in the token ring").
READ_VALUE	Read the updated bus parameters (e.g., TLN, BDR, TRT).
TIME_TTH_READ	Read the token hold time still available when receiving the token.
MAC_EVENT	Read out an event message (e.g., "cable short-circuit").

Some of the characteristics of the individual FMA services are summarized in Table 3-3.
Table 3-3. Characteristics of FMA Services

FMAS Service charactertstics FMaservice	fmaservice s5595usts Active	the Passure	FMA fequest Necessary?
Uasustaneate	X		X
Fousstatus	X		X
READVAUS	X	X	X
TME.TIMAEAD	X		X
Macesumt	X	X	

As a prerequisite to using FMA services you must perform the following actions on the relevant programmable controller:

- Define job number ANR=200 for calling up the L2-SEND and L2-RECEIVE function blocks, and define the location of a status byte in DB1.
- \quad Set parameters for the L2-SEND and L2-RECEIVE function blocks.
- Set up a data block for the service request and for the confirmation.

Section 3.4.3 describes how to assign parameters in DB1. Chapter 5 describes how to assign parameters for L2-SEND and L2-RECEIVE.

3.4.3 Assigning Parameters in DB1 for the FMA Services

The default settings of DB1 do not enable the FMA services. To activate the FMA services, set the following parameters in DB1:

- The job number A-NR=200 (200 is reserved for FMA services)
- The location of a status byte (STB) for FB L2-SEND and FB L2-RECEIVE.

The status byte displays the status of the transmit or receive jobs and informs you of possible errors. Section 5.4 explains in detail the structure and the evaluation of the STB. The STB parameter settings provide you with access to all the FMA services described in section 3.6.2, except MAC_EVENT. If you want to use MAC_EVENT, you must specifically activate this service in DB1.

Figure 3-9 shows DB1 with parameter settings for all FMA services.
The procedures to set and modify parameters in DB1 and to transfer DB1 are described in detail in section 1.4.

```
156: KS =' SL2: %...&&%.|STA AKT';
168: KS =' BDR 500 HSA 10 TRT ';
180: KS ='5120 SET 0 ST 400 ';
192: KS ='SDT 1 12 SDT 2 360 ';
```


Figure 3-9. DB1 with Parameter Settings for All FMA Services

Table 3-4 shows the parameters to use for FMA services.
Table 3-4. DB1 Parameters for the FMA Services

3.4.4 Managing of all FMA Services with FB222

FB222 (named AG95/FMA) allows you, with a minimum of programming, to initiate and monitor FMA jobs, and to react to them. You program FB222 once for a given S5-95U. FB222 can be used for all the FMA services.

Structure the control program for the FMA services as shown in Figure 3-10.

Significance of the FB222 Parameters:

REQ Input parameter bit

Setting this bit triggers the request job with the service code specified in the CODE parameter. You set the REQ bit before the FB222 call-up. FB222 resets the REQ bit after the job has been triggered or if an error has occurred.
CODE Input parameter word
Left byte $=$ station address of the remote station (valid only for FMA service FDL_STATUS, service_code 22H)
Right byte = service_code
You transfer the service code and, with service code 22 H , the address of the remote station for the request job (triggered by parameter REQ).
CONF Output parameter bit (CONF=1 for all FMA services except MAC_EVENT)
FB222 tells you that a confirmation was received. You can evaluate the received data in the receive area of data block DB200. FB222 sets bit CONF. You must reset bit CONF after evaluation of the received data.
INDI Output parameter bit (INDI=1 for FMA service MAC_EVENT)
FB222 tells you that an indication was received. You can evaluate the received data in the receive area of data block DB200. FB222 sets bit INDI. You must reset bit INDI after evaluation of the received data.

FEHL Output parameter bit

FB222 tells you that a parameter assignment error or a status byte error has occurred. FB222 sets the bit. You must reset the bit after you have evaluated it.

(continued)

The chapter for each particular FMA service describes how you call up FB222 from OB1.

3.4.5 Reading Out a List of All Active Stations on the Network (LAS_LIST_CREATE)

The LAS_LIST_CREATE (List of Active Stations) service delivers a list of all active stations on the network up to HSA.
The creation of this list does not burden the bus (local service).
Figure 3-10 shows the structure of the LAS_LIST_CREATE request and confirmation blocks.

Structure the LAS_LIST_CREATE request block as follows:

The data are stored in the LAS_LIST_CREATE confirmation block as follows:

Figure 3-10. Structure of the LAS_LIST_CREATE Request and Confirmation Blocks link_status

Table 3-5. link_status Messages for the LAS_LIST_CREATE Confirmation

IIn). Statis Meloung	
00 ${ }_{\text {H }}$	ok (okay): Positive confirmation, LAS was read out
15_{H}	iv (invalid): Errorr, local station is passive, service is impossible

The status bytes of the stations are located in the confirmation block as shown in Figure 3-10.

0	0	0	0	0	0	0	1	$1_{\mathrm{H}}=$ Station does not exist or is passive
0	0	0	0	0	0	1	0	$2_{H}=$ Station active, waiting for the token
0	0	0	0	0	1	0	0	$4_{\mathrm{H}}=$ Station active (connected)

Figure 3-11. LAS_LIST_CREATE Status Bytes

Calling Up FB222 and Storing the Data with FMA Service LAS_LIST_CREATE

3.4.6 Reading the Status of Another Station (FDL_STATUS)

The FDL_STATUS service delivers information about the status of another station on the network (remote service).

Structure the FDL_STATUS request block as follows:

Relevant parameters

The data are stored in the FDL_STATUS confirmation block as follows:

Figure 3-12. Structure of the FDL_STATUS Request and Confirmation Blocks

link_status

Table 3-6. link_status Messages for the FDL_STATUS Confirmation

Imk statis Message\%	Stimilearce.
$\begin{aligned} & 00_{\mathrm{H}} \\ & 15_{\mathrm{H}} \end{aligned}$	ok (okay): Positive confirmation, FDL_STATUS was read out iv (invalid): The following errors may have occurred: - Local station is passive, service is not possible - Target station address is own address - Target station address is higher than 126

The status information may be contained in byte 8 of the confirmation block as shown in Figure 3-12.

Figure 3-13. Status Byte of FDL_STATUS

Calling Up FB222 and Storing the Data with FMA Service FDL_STATUS

3.4.7 Reading Updated Bus Parameters (READ_VALUE)

The READ_VALUE service allows you to read out the updated bus parameters of the local station.

Structure the READ_VALUE request block as follows:

Relevant parameters

The data are stored in the READ_VALUE confirmation block as follows:

Figure 3-14. Structure of the READ_VALUE Request and Confirmation Blocks link_status

Table 3-7. link_status Messages for the READ_VALUE Confirmation

link stams Message	
00_{H}	ok (okay): Positive acknowledgement, service was executed, bus parameters were read out

Table 3-8 lists the parameters, their meanings and their permissible range of values of the bus parameter block for the STB display 'Job completed without error' (see detailed explanation of the parameters in section 1.4).

Table 3-8. Bus Parameter Block Values for a READ_VALUE Confirmation

Eyte	Parameter	Stonticarce	Value Range code
8	$\begin{aligned} & \mathrm{tln} \\ & \text { (byte) } \end{aligned}$	Address of the local station	active stations 0 to 31 passive stations0 to 126
9	sta (word)	Type of the local station	00H=passive $01 \mathrm{H}=$ active
10	hsa (byte)	Highest active station address	1 to 126
11	bdr (byte)	Baud rate	$\begin{aligned} & 0=9.6 \mathrm{KBaud} \\ & 1=19.2 \mathrm{KBaud} \\ & 2=93.75 \mathrm{KBaud} \\ & 3=187.5 \mathrm{KBaud} \\ & 4=500 \mathrm{KBaud} \\ & 5=1.5 \mathrm{MBaud} \end{aligned}$
$\begin{gathered} 12 \text { to } \\ 15 \end{gathered}$	trt (double word)	Target rotation time In this time, the token should have been passed once to every active station.	256 to 1048320 bit times
16 \& 17	st (word)	Slot time (initiator waits for reply frame)	34 to 4095 bit times
18 \& 19	set (byte)	Set-up time	0 to 494 bit times
20 \& 21	STD1 (word)	Minimum station delay time	11 to 255 bit times
22 \& 23	STD2 (word)	Maximum station delay time	35 to 1023 bit times
24	$\begin{aligned} & \text { rtr* } \\ & \text { (byte) } \end{aligned}$	Number of call-up retries to a remote, non-replying station	1 to 8 Default in the S5-95U: 1
25	gap* (byte)	Gap update factor	2 to 255 in multiples of the target rotation time Default in the S5-95U: 20

[^1]
Calling Up FB222 and Storing the Data with FMA Service READ_VALUE

3.4.8 Reading Out Available Token Hold Time When Receiving the Token (TIME_TTH_READ)

The TIME_TTH_READ service gives you the available token hold time when receiving the token. It is very useful in the start-up phase for setting the target rotation time.
If the available token hold time moves towards zero, you must assign a higher value to the target rotation time. Since the available token hold time fluctuates, you should read it out several times at short intervals and calculate its mean value.

Structure the TIME_TTH_READ request block as follows:

Relevan parameters

The data are stored in the TIME_TTH_READ confirmation block as follows:

* The values for the remaining token hold time can be in the range of 0 to 1048320 bit times.

Figure 3-15. Structure of the TIME_TTH_READ Request and Confirmation Blocks

link_status

Table 3-9. link_status Messages for the TIME_TTH_READ Confirmation

Calling Up FB222 and Storing the Data with FMA Service TIME＿TTH＿READ

	\＃k OS200		§\％月月肌
		＊＊＊＊REQUEST Block＊＊＊＊	
6：	KH＝2300；	service＿code／irrelevant	
7：	KY＝000，000；	irrelevant／irrelevant	
8：	KY＝000，000；	irrelevant／irrelevant ＊＊＊＊CONFIRMATION＊＊＊＊	
9：	KH＝0100；	com＿class／user＿id	
10：	KH＝2300；	service＿code／link＿status	
11：	KY＝000，000；	irrelevant／irrelevant	
12：	KY＝000，000；	irrelevant／irrelevant	
13：	KH＝0000；	remaining token hold time，high word	
14：	кH＝0200；	remaining token hold time，low word	

3.4.9 Reading Out the Event Message (MAC_EVENT)

This FMA service is for reading out fault events. It is useful for testing during start-up.
Principle of Operation (represented in Figure 3-16)

- Errors recognized by the communications processor (e.g., double token, frame errors) are indicated automatically. There is no need for a service request.
- A pending error indication is displayed in the status byte (STB) at job number A-NR 200.
- An error indication is fetched by means of integral FB L2-RECEIVE (FB253) via job number A-NR 200 .

PLC

Figure 3-16. Sequence Principle of FMA service MAC_EVENT
The indication consists of a maximum of 58 bytes. Bytes 0 to 7 are assigned to the header. The error indications are stored in the sequence of their occurrence starting with byte 8 (up to 50 errors can be recorded). Figure 3-17 shows the structure of the MAC_EVENT indication block.

The parameter values are stored in the MAC_EVENT indication block as follows:

Figure 3-17. Structure of the MAC_EVENT Indication Block

Table 3-10 lists the possible error codes.
Table 3-10. Event Parameter Message in Indication Block

| 01_{H} |
| :---: | :--- | :--- | :--- |

If temporary errors occur often in your network, check the network configuration. The errors could be caused by hardware problems on the network, such as faulty cables, bus connectors, etc.

Calling Up FB222 and Storing the Data with FMA Service MAC_EVENT

4. Data Iransmission Using a Siandard Comnection

4.1 Features of a Standard Connection 4-1
4.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Standard Connections

4-3
4.3 Transmitting Data ... 4-5
4.4 Receiving Data ... 4-7
4.5 Programming Example for Data Transmission via a Standard Connection

4-9
4.6 Broadcast Request ("Transmit to All") 4-14

Figums

4-1. Example of a Hardware Configuration for a Standard Connection 4-1
4-2. Functional Diagram of a Standard Connection 4-2
4-3. DB1 with the Default Parameters for Standard Connections 4-3
4-4. Structure of the Send Mailbox for a Standard Connection 4-5
4-5. Structure of the Send Coordination Byte (CBS) for a Standard Connection 4-6
4-6. Structure of the Receive Mailbox for a Standard Connection 4-7
4-7. Structure of the Receive Coordination Byte (CBR) for a Standard Connection 4-8
4-8. Example of a Hardware Configuration for a Broadcast 4-14
rables
4-1. DB1 Parameters for Standard Connections 4-3
$4-2$. Setting Parameters for Standard Connections 4-4

4 Data Transmission Using a Standard Connection

This chapter provides you with the following information:

- How this type of data transmission functions in principle
- How to set parameters for the programmable controllers
- How to program with STEP 5 for this type of data transmission (examples)

4.1 Features of a Standard Connection

- The standard connection is particularly appropriate for:
- The transmission of large quantities of data (242 bytes)
- A homogeneous networking of S5-95U programmable controllers

Communication with other devices, such as with the CP 5430-1 (Order no. 6GK1 543-0AA01), is also possible.

- Active and passive L2 stations can participate on the network.
- There are two ways to transmit data:
- Any active L2 station can transmit to any other active station.
- Any active L2 station can transmit simultaneously to all other connected active and passive stations (broadcast, see section 4.6).
- Active stations must have a transmitter or receiver number. This number is the L2 station address used to address the stations. A station address must be within the range of 1 to 31 . A station address may be assigned only once on the network.
- Programmable controller parameters are set in data block DB1 to enable data exchange.

Figure 4-1 shows a possible hardware configuration for the standard connections described in section 1.5. All of the examples used in sections 4.2 through 4.5 refer to this configuration.

Figure 4-1. Example of a Hardware Configuration for a Standard Connection

Principle of Operation

For this type of communication you need to define the following once:

- The send mailbox (SF) that contains the transmit data (maximum 242 bytes).
- The send coordination byte (CBS) that coordinates between user program and SINEC L2.
- The receive mailbox (RM) that contains the received data (maximum 242 bytes).
- The receive coordination byte (CBR) that coordinates between user program and SINEC L2.

The coordination bytes are stored in the flag area. The send and receive mailboxes are usually stored in a data block. Figure 4-2 illustrates a standard connection.

* Send_Erl = bit "transmit allowed"

Empf_Erl = bit "receive allowed"
Figure 4-2. Functional Diagram of a Standard Connection

Explanations to Figure 4-2:
If you want to transmit a message, write to the send mailbox: Enter in the send mailbox the amount of data to transmit (amount of net data) and the receiver's address (L2 destination address), and then store the message (net data). Then grant the permission to transmit in send coordination byte (set bit "Send_Erl").
The S5-95U sends the message to the addressed receiver via the bus.
After the message has arrived at the receive mailbox, bit "Empf_Erl" (receive allowed) is reset in the receive coordination byte. The received data are available for evaluation in the receive mailbox. To restore the receive readiness, empty the receive mailbox, and set bit "Empf_Erl" in the receive coordination byte.

4.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Standard Connections

You assign the following parameters in DB1:

- The location of the send mailbox (SM).
- The location of the receive mailbox (RM).
- The location of the send coordination byte (CBS).
- The location of the receive coordination byte (CBR).

SF, EF, CBS, and CBR are used with the L2 bus of the S5-95U the same way as with the SINEC L1 bus. Refer to chapter 14 of the S5-90U/S5-95U Programmable Controller System Manual for additional information.

DB1 with the default parameters for standard connections is represented in Figure 4-3.
The procedure for parameterizing, modifying and transferring the DB1 parameter block is described in detail in section 1.4.

```
156:
Basic parameters (see section 1.4)
180: KS ='5120 SET 0 ST 400 ';
192: KS \(=\) 'SDT 112 SDT 2360 ॠ厄..
```



```
228: KS ='\# END ';
```

Figure 4-3. DB1 with the Default Parameters for Standard Connections

DB1 Parameters for Standard Connections

Table 4-1. DB1 Parameters for Standard Connections

Parameret	Argument	Significance
Brock P S S		Sinecera
Parameters tors Standars Commection		
SF EF KBS KBE	DBxDWy or MBz DBxDWy or MBz MBh MBh	Location of the send mailbox Location of the receive mailbox Location of the send coordination byte Location of the receive coordination byte
Argument	Permissible Range	Explanation
MBh DBx DWy MBz	$\begin{aligned} & 1 \text { to } 63 \\ & 2 \text { to } 255 \\ & 0 \text { to } 255 \\ & 0 \text { to } 254 \end{aligned}$	Flag byte Data block Data word Flag byte

\qquad

Example: Two S5-95U programmable controllers are to communicate using a standard connection.

Table 4-2. Setting Parameters for Standard Connections

The remaining sections of chapter 4 provide detailed information on how to control transmitting and receiving data.

4.3 Transmitting Data

There are two prerequisites for transmitting data:

- The parameters for the locations of SF and CBS are set in data block DB1 (see section 4.2).
- The transmit data, additional information (length of the transmit data ("net data"), and the station address of the receiver) have been transferred to the send mailbox.

Figure 4-4 shows which information must be stored in which send mailbox location.

Example: Send mailbox in the flag area
(starting with flag byte 0)

Example: Send mailbox in the data block
(starting with data word DW0)--

FY 0	"Net data" length in bytes (1 to 242)
FY 1	"Receiver's address*
FY 2	1st data item
FY 243	242nd data item

DL
DR

"Net data" length in bytes (1 to 242)	Receiver's address*
1st data item	2nd data item
241st data item	242nd data item

* 1 to 31 = L2 station address (active stations)

255 = Broadcasting (to all active and passive stations, see section 4.6)
Figure 4-4. Structure of the Send Mailbox for a Standard Connection
\qquad

Structure of the Send Coordination Byte (CBS)

Figure $4-5$ shows the structure of the send coordination byte (CBS).
Bit

Warning

If you write bit 6 of CBS, undefined conditions can occur in the network.
Bit 6 is not available to the user.
Figure 4-5. Structure of the Send Coordination Byte (CBS) for a Standard Connection

4.4 Receiving Data

Prerequisites for receiving data:
You have set the parameters for the location of the receive mailbox (RM) and receive coordination byte (CBR) in data block DB1 (see section 4.2). Figure $4-6$ shows where information is stored when it is received.

Example: The receive mailbox is in the flag area (starting with flag byte 0)

Example: The receive mailbox is in the data block (starting with data word DW0)
DL
DR

FY 0	"Net data" length in bytes (1 to 242)
FY 1	Transmitter's address*
FY 2	1st data item
FY 243	242 nd data item

	DL	DR
DW 0	"Net data" length in bytes (1 to 242)	Transmitter's address*
DW 1	1st data item	2nd data item
DW 2	3rd data item	4th data item
DW 121	241st item	242nd item

* 1 to $31=$ L2 station address (active stations)

Figure 4-6. Structure of the Receive Mailbox for a Standard Connection

Structure of the Receive Coordination Byte (CBR)

Figure 4-7 shows the structure of the receive coordination byte (CBR).

1

Warning

If you write in bit 6 of CBS, the bus might enter an undefined state.
Bit 6 is not available to the user.

Figure 4-7. Structure of the Receive Coordination Byte (CBR) for a Standard Connection

4.5 Programming Example for Data Transmission via a Standard Connection

This section explains the structure of the control program in the following example:
Programmable controller 1 is to receive data from programmable controller 2 and to transmit data to programmable controller 2. Refer to section 4.1 for the description of the hardware configuration.

The control program in FB1 for receiving data is structured as illustrated below.

yes	
	Evaluation of the receive mailbox
Waiting for data arrival (Bit 7 of $\mathrm{CBR}=0$)	Receive mailbox enabled to receive again (Bit 7 of $\mathrm{CBR}=1$)
Jump to program section "transmit" 7 of $\mathrm{CBR}=1$?)	

The control program in FB1 for transmitting data is structured as illustrated below.

\qquad

Programmable Controller 1

Proceed as follows:
Assign parameters in DB1 of programmable controller 1 as described in section 4.2.
Program the individual blocks as described in the following section.
Transfer blocks DB1, OB1, DB6, and DB7 to programmable controller 1.

Cyclical Program for Station 1 (Programmable Controller 1)

The following was set in DB1:

- Send mailbox is in DB6 starting with data word DW0
- Receive mailbox is in DB7 starting with data word DW0.
- Send coordination byte is in flag byte FY62.
- Receive coordination byte is in flag byte FY63.

	FB1 tom PLCM	(contruedy	Explaration
0014	м001:		
0015	: on	= Anst	If transmit trigger bit is 0 or send mailbox is enabled to transmit, or transmit disabling bit is set, jump to edge evaluation 'Job completed'.
0016	: 0	F 62.7	
0017	: 0	F 71.2	
0018	: Јc	= M002	
0019	:		
001A	: A	DB6	Open send mailbox data block Prepare transmit job: Enter net data length (bytes) and enter destination address.
001B	:		
001c	: Iw	$=\mathrm{LAEN}$	
001D	: т	DL 0	
001E	: Lw	$=$ zIEL	
001F	: T	DR 0	
0020	:		
0021	: AN	F 62.7	CBS bit 'Enable transmit' Send mailbox enabled to transmit set transmit disabling bit, reset edge auxiliary flag.
0022	: s	F 62.7	
0023	: s	F 71.2	
0024	: R	F 71.0	
0025	:		
0026	м002 :		Edge evaluation 'Job completed'
0027	: A	F 71.2	
0028	: AN	F 62.7	
0029	: AN	F 71.0	
002A	: $=$	F 71.1	
002B	: A	F 71.1	
002C	: s	F 71.0	
002D	: A	F 62.7	
002E	: R	F 71.0	
002F	:		
0030	: A	F 71.1	If job was completed and there was no error in the last data transmission, reset transmit disabling bit, reset transmit trigger bit.
0031	: AN	F 62.0	
0032	: R	F 71.2	
0033	: RB	$=$ AnST	
0034	:		
0035	: A	F 71.1	If job was completed and there was an error in the last data transmission, reset transmit disabling bit.
0036	: A	F 62.0	
0037	: R	F 71.2	
0038	: BE		

\qquad

Programmable Controller 2

Proceed as follows:
Assign parameters in the DB1 of programmable controller 2 as described in section 4.2.
Program the individual blocks as described in the following section.
Transfer blocks DB1, OB1, DB8, and DB9 to programmable controller 2.

Cyclical Program for Station 2 (Programmable Controller 2)

The following was set in DB1:

- Send mailbox is in DB8 starting with data word DW0
- Receive mailbox is in DB9 starting with data word DW0.
- Send coordination byte is in flag byte FY60.
- Receive coordination byte is in flag byte FY61.

	FBut or PLC 2	contiued)	Explamation
0014	м001:		
0015	: on	$=$ Anst	If transmit trigger bit is 0 , or send mailbox is enabled to transmit, or transmit disabling bit is set, jump to edge evaluation 'Job completed'.
0016	: 0	F 60.7	
0017	: 0	F 71.2	
0018	: Jc	= M002	
0019	:		
001A	: c	DB 8	
001B	:		Prepare transmit job: Enter net data length (bytes)
001C	: Lw	= Lams	Enter net data length (bytes) and
001D	: т	DL 0	
001E	: Lw	$=$ ziel	enter destination address.
001 F	: т	DR 0	
0020	:		CBS bit 'Enable transmit' Send mailbox enabled to transmit set transmit disabling bit, reset edge auxiliary flag.
0021	: AN	F 60.7	
0022	: s	F 60.7	
0023	: s	F 71.2	
0024	: R	F 71.0	
0025	:		
0026	M002 :		
0027	: A	F 71.2	Edge evaluation 'Job completed'
0028	: AN	F 60.7	
0029	: AN	F 71.0	
002A	: $=$	F 71.1	
002B	: A	F 71.1	
002C	: s	F 71.0	
002D	: A	F 60.7	
002E	: R	F 71.0	
002F	:		
0030	: A	F 71.1	If job was completed and
0031	: AN	F 60.0	there was no error in the last data transmission,
0032	: R	F 71.2	reset transmit disabling bit,
0033	: RB	$=$ ANST	reset transmit trigger bit.
0034	:		
0035	: A	F 71.1	If job was completed and
0036	: A	F 60.0	there was an error in the last data transmission,
0037	R	F 71.2	reset transmit disabling bit.
0038	: BE		

Switch both programmable controllers from STOP to RUN. The programmable controllers accept the parameter values of both DB1 data blocks.
Check the data transmission. This is done best with a programmer: Connect each programmable controller to a programmer and display the data blocks and the coordination bytes.
Refer also to section 3.3 "Starting up a System".
Appendix E gives you information on cycle delay times in the programmable controllers due to data transmission.

4.6 Broadcast Request ("Transmit to All")

"Broadcasting" means that one active station transmits a message to all active and all passive stations.

Figure 4-8. Example of a Hardware Configuration for a Broadcast

The sender's prerequisites for broadcast transmission are as follows:

- The parameters for the locations of CBS and SF are set in data block DB1 (see section 4.2).
- Send data and additional information are transferred to the send mailbox.
- The receiver's address " 255 " (hexadecimal) for a broadcast is entered in byte 2 of the send mailbox (see section 4.3).

The receiver's prerequisites for broadcast transmission are as follows:

- In an active station: At least CBR and RM are set up.
- In a passive station: Only CBR and RM are set up.

Note

Bits 1,3 , and 4 in the CBS (see section 4.3) are not relevant for broadcast jobs because the receiver does not acknowledge broadcast transmissions.

5 Integrai Standand Finction Biomk I SENB and 2 RECEIVE
5.1 Parameters for L2-SEND and L2-RECEIVE 5-2
5.2 Direct and Indirect Parameter Settings for the L2 Function Blocks . 5-4
5.3 Parameter Assignment Error Byte (PAFE) 5-5

Fgures

5-1. Information Transport with the FB L2-SEND and FB L2-RECEIVE Function Blocks
5-1
5-2. Structure of the PAFE Parameter Assignment Error Byte 5-5
5-3. Structure of the Status Byte
5-6

rables

5-1. A List of Parameters Used by L2-SEND (FB252) 5 5 2
5-2. A List of Parameters Used by L2-RECEIVE (FB253) 5-2
5-3. Allocation of the Job Numbers 5 - 2
5-4. Formal Operands: Significance of the Parameters Used with
L2-SEND (FB252) . 5 - 3
5-5. Formal Operands: Significance of the Parameters Used with
L2-RECEIVE (FB253) . 5 - 3
5-6. An Example of Direct Parameter Settings for the L2-SEND Function Block . 5-4
5-7. An Example of Indirect Parameter Settings for the L2-SEND Function Block 5-4
5-8. Error Codes in the Status Byte (Bits 4 to 7) 5-7

5 Integral Standard Function Blocks L2-SEND and L2-RECEIVE

The L2-SEND (FB252) and L2-RECEIVE (FB253) standard function blocks are already integrated in the S5-95U operating system.
FB L2-SEND transports information from the control processor of the S5-95U to the communications processor of the S5-95U.
FB L2-RECEIVE transports information from the communications processor of the S5-95U to the control processor of the S5-95U (section 5.1).

S5-95U

Figure 5-1. Information Transport with the L2-SEND and L2-RECEIVE Function Blocks

The standard function blocks manage the following communications (Figure 5-1) services:

- Transmitting and receiving by means of PLC to PLC connections (chapter 6)
- Service functions and diagnostic functions with FMA services (chapter 3)
- Fetching the ZP slave life list with cyclic I/O (chapter 7)
- Transmitting and receiving via layer 2 access (chapter 8)

Standard function blocks offer you the following advantages:

- They do not occupy any memory locations in the user memory.
- They have short run times.
- They do not require any STEP 5 timers or STEP 5 counters.
- Their processing cannot be interrupted (e.g., by interrupts).
- They can be called up from any other block (OB, PB, FB, SB).

Cycle delay times in the programmable controllers caused by standard function blocks are described in Appendix E.

5.1 Parameters for L2-SEND and L2-RECEIVE

Function blocks L2-SEND and L2-RECEIVE use the parameters listed in Tables 5-1 and 5-2.
Table 5-1. A List of Parameters Used by L2-SEND (FB252)

Table 5-2. A List of Parameters Used by L2-RECEIVE (FB253)

Destighation		Sigmicatce	
${ }^{\text {A-NR }}$:	Job number	
zTYP	:	Type of data destination	
DBNR	:	Data block number	
zANF	:	Data block start address of	on data area
zLAE	:	Length of destination data	

The job number specifies the following:

- The type of communication service (as listed in Table 5-3)
- With PLC to PLC connection:
- in L2-SEND, to which station the data are transmitted
- in L2-RECEIVE, from which station the received data were transmitted.
- With layer 2 accesses
- in L2-SEND, which layer 2 access is used for sending data
- in L2-RECEIVE, which layer 2 access is used for receiving data

Table 5-3 Allocation of the Job Numbers

Ion Number	Allocatea to Typeroi communication
1 to 31	Transmitting and receiving via PLC to PLC connections
33 to 54, 64	Transmitting the request and fetching the confirmation using the layer 2 access
133 to 154, 164	Fetching the indication when using layer 2 access
200	Service and diagnostics functions with FMA services
202	Fetching the ZP slave life list for ZP master with cyclic I/O

The formal operands that have to be specified when the standard function blocks are used are explained in Tables 5-4 and 5-5.

Table 5-4. Formal Operands: Significance of the Parameters Used with L2-SEND (FB 252)

Table 5-5. Formal Operands: Significance of the Parameters Used with L2-RECEIVE (FB 253)

5.2 Direct and Indirect Parameter Settings for the L2 Function Blocks

You can set parameters either directly or indirectly for the L2-SEND and L2-RECEIVE function blocks.

The advantage of indirect parameter settings: you can assign new parameters to the standard function blocks from the STEP 5 program. The parameters are then located as a parameter list in a data block.

Table 5-6 is an example of direct parameter settings for the L2-SEND function block. Table 5-7 is an example of indirect parameter settings for the L2-SEND function block.

Table 5-6. An Example of Direct Parameter Settings for the L2-SEND Function Block

Table 5-7. An Example of Indirect Parameter Settings for the L2-SEND Function Block

5.3 Parameter Assignment Error Byte (PAFE)

The parameter assignment error byte (PAFE) indicates errors made when assigning parameters for L2-SEND and L2-RECEIVE. Flag byte 255 is reserved as the parameter assignment error byte. You can scan the PAFE in the control program and program the reactions to errors that occur.

Flag byte 255

0: - No parameter assignment error
1: - Parameter assignment error
0 - Irrelevant
1 - Irrelevant
2 - Area does not exist (DB does not exist / is not permitted)
3 - Area is too small
4 - Overload, access to L2 interface is not possible
5 - Incorrect contents of status byte (user access to the status byte is not permitted)
6 - Source or destination parameters not permitted for L2-SEND/L2-RECEIVE
7 - Irrelevant
8 - Irrelevant
9 - Irrelevant
A - Irrelevant
B - Parameter assignment error (length incorrect)
C - Destination address = source address
D - Programmable controller is a passive station, job is not possible
E - No parameters assigned for the job
F - Job number not permissible
irrelevant bits
Figure 5-2. Structure of the PAFE Parameter Assignment Error Byte

Note

It is possible to overwrite PAFE in the STEP 5 program. We do not recommend that you do if you want to keep programming clear. After call-up of L2-SEND or L2-RECEIVE, PAFE may have been written to with error indications so you need to scan it in the STEP 5 program.

5.4 Status Byte

The status byte (STB) is used to control the data transmission using L2-SEND and L2-RECEIVE. You need to evaluate the status byte in order to monitor the data exchange between the control processor of the S5-95U and the communications processor of the S5-95U. The status byte indicates errors and the status of a job and informs you about data management. Define the location of the status byte in DB1..

$$
\text { e.g., flag byte } 200 \quad \text { e.g., flag byte } 201
$$

* With FBs L2-RECEIVE, the flag byte immediately following the status byte is reserved for the length byte. It is not available to the user.

Figure 5-3. Structure of the Status Byte

Warning

If you write in the status byte, undefined states can occur during job processing.
You may only read the status byte.

Note

In the case of the FMA services (section 3.4), the error codes $7_{\text {hex }}$ to $C_{\text {hex }}$ in bits 4 to 7 of the status byte do not exist for L2-RECEIVE.

Table 5-8. Error Codes in the Status Byte (Bits 4 to 7)

Value of Bis 4 iot In STE (hexadecimal	Stunicance of te Eriot Codus
0	No error
4	Overload, access to L2 interface is not possible
7	Local medium busy No data buffer is available for processing the job. Remedy - Retrigger the job after a waiting period. - Reconfigure to decrease the L2 load.
8	Remote medium busy No input buffer is available for the job on the remote programmable controller (still occupied by the previous job input). Remedy: - Use L2-RECEIVE to accept the "old" data in the remote programmable controller. - Repeat the transmit job in the transmitting programmable controller.
9	Remote error The remote programmable controller acknowledges the job negatively, for example because the SAP assignment is incorrect (Appendix B). Remedy: Reconfigure (correct) the connections.
A	Connection error The transmitting programmable controller or the receiving programmable controller is not connected to the bus. Remedy: Switch the systems on or connect the systems and test the bus connections.
C	The remote programmable controller is in the STOP mode Recognition of PLC STOP works only with the PLC to PLC connection and then only if the destination station is an S5-95U and if the destination station was configured properly.

${ }^{6}$ Data transmission Using PLC iom C Commectons

6.1 Features of the PLC-to-PLC Connections 6 - 1
6.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with PLC-to-PLC Connections

6-4
6.3 Programming Example for Data Transmission via PLC-to-PLC Connections Using Standard Function Blocks 6-6

Figures

6-1. Example: Hardware Configuration for PLC-to-PLC Connection6-1
6-2. Functional Diagram of a PLC-to-PLC Connection 6-2
6-3. Diagram: Data Transmission Using PLC-to-PLC Connections 6-4
Tables
6-1. Configuring Job Number n in DB1 6-4
6-2. DB1 Parameters for PLC-to-PLC Connections 6-5
6-3. Assigning Parameters for PLC-to-PLC Connections 6-5

6 Data Transmission Using PLC-to-PLC Connections

This chapter provides you with the following information:

- How this type of data transmission functions in principle
- How to communicate with the CP 5430 communications processor
- How to set parameters for the programmable controllers
- How to program with STEP 5 for this type of data transmission (examples)

6.1 Features of the PLC-to-PLC Connections

- You use PLC-to-PLC connections to connect active stations.
- You can set parameters in DB1 for a maximum of 31 PLC-to-PLC connections.
- You use the integral function blocks L2-SEND and L2-RECEIVE to communicate via PLC-to-PLC connection. L2-SEND and L2-RECEIVE are described in detail in chapter 5.
- For L2-SEND you need to specify the following parameters:
- The destination programmable controller as the job number

The job number is identical to the destination station address on the SINEC L2 network.

- The data to transmit
- For L2-RECEIVE you need to specify the following parameter:
- The source programmable controller as the job number.
(The job number is identical to the source station address on the SINEC L2 network.)
- Please note that
- a specific status byte 'Transmit' STBS belongs to L2-SEND and each of the job numbers
- a specific status byte 'Receive' STBR belongs to L2-RECEIVE and each of the job numbers
- You can transmit or receive a maximum of 242 bytes of data per job.
- You can transmit in parallel to several stations.
- You can receive in parallel to several stations.
- You can transmit faster using PLC-to-PLC connections than using standard connections.

Figure 6-1 shows a possible hardware configuration (section 1.5) for the PLC-to-PLC connections. All examples in section 6.3 refer to PLC 1 and PLC 2 in this configuration.

Active
stations
Bus

Passive
stations none

PLC to PLC connection
Figure 6-1. Example: Hardware Configuration for PLC-to-PLC Connection

Principle of Operation

Figure 6-2. Functional Diagram of a PLC-to-PLC Connection

Explanations to Figure 6-2:
When there are no more jobs running on the PLC-to-PLC connection, the 'send' status byte indicates that it is okay to transmit. L2-SEND is called up from the user program. L2-SEND receives the following information from the parameter assignment:

- where to send the data (job number)
- where the net data are stored

The net data are transmitted to the addressed receiver via the network. At the receiver, a bit in status byte 'Receive' indicates that the data arrived. The receiver can fetch the data by means of L2-RECEIVE.

Communicating with the CP 5430 Communications Processor

If you want to connect other SIMATIC S5 controllers (S5-115U, S5-135U, S5-155U) to the network, you can use the CP 5430 communications processor (see Figure 6-1).
You configure the desired PLC-to-PLC connection in DB1 of the S5-95U, and program function blocks L2-SEND and L2-RECEIVE. For this PLC-to-PLC connection, configure the default connection in the CP 5430. The CP 5430 can communicate with the S5-95U using its data handling blocks SEND and RECEIVE.

When making entries in the COM 5430-VERB editor screen, note the following:

- You must enter the job number configured in DB1 of the S5-95U in the SEND/RCV-ANR (local parameters) column. The job number corresponds to the station address of the partner station (section 6.2).
- SAP (local parameter) $=$ station address of the partner station +1 (Appendix B for an explanation and definition of the SAP numbers in the case of the S5-95U)
- The "Remote Parameters" columns are irrelevant for an S5-95U as communications partner.

You will find additional information on the connection of the CP 5430 to the SINEC L2 network in the "SINEC L2 Local Area Network, CP 5430 with COM 5430" Manual, order number 6GK1 970-5AA00-0AA0.

6.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with PLC-to-PLC Connections

There are no default settings in DB1 for the PLC-to-PLC connections. You assign the parameters in data block DB1 for the following items:

- The station to which the data is to be sent and from which the data is to be received
- The location of the status byte for the function blocks FB L2-SEND and FB L2-RECEIVE for each connection desired
All status bytes must be in the flag byte area. The status of transmit or receive jobs is displayed in the status byte, as well as possible errors. The structure and the evaluation of status bytes are discussed in detail in section 5.4. For function block FB L2-RECEIVE, the flag byte following the status byte is always reserved for the length byte. The length byte tells how many bytes of data were received. You have only reading rights to the length bytes.

Figure 6-3 shows how the DBs, STBs, and L2 FBs work together for data transmission in a programmable controller.

Figure 6-3. Diagram: Data Transmission Using PLC-to-PLC Connections

Table 6-1 is a configuration aid for assigning job numbers in DB1.
Create such a table in your planning phase.
How to read the table: Job number A-NR = station address TLN of the communication partner.
Example: \quad PLC 1 transmits with A-NR 2 to PLC 2;
PLC 1 receives with A-NR 2 from PLC 2 etc.

Table 6-1. Configuring Job Number \mathbf{n} in DB1
艮
\qquad

The procedures to set and modify parameters in DB1 and to transfer DB1 are described in detail in section 1.4 .

DB1 Parameters for PLC-to-PLC Connections

Table 6-2. DB1 Parameters for PLC-to-PLC Connections

Parameter	Argument	Stimilcarre
Bloct Dessm?		SINECLA
$\begin{aligned} & \text { STBS } \\ & \text { STBR } \end{aligned}$	n MBx n MBy	Job number and location of status byte 'Transmit Job number and location of status byte 'Receive'
Argument	Permissible Range	Explanation
$\begin{gathered} \mathrm{n} \\ \mathrm{MBx} \\ \mathrm{MBy} \end{gathered}$	1 to 31 1 to 254 1 to 253	Job number Flag byte Flag byte*

* The next flag byte is reserved as length byte

Example: Two S5-95U are to communicate with each other.
Table 6-3. Assigning Parameters for PLC-to-PLC Connections

	bsim fres	Explaration
$\begin{aligned} & \text { 156: } \\ & \text { 168: } \\ & \text { 180: } \\ & \text { 192: } \\ & \text { 204: } \end{aligned}$	KS $=1$ SL2: TLN 1 STA AKT'; KS $=1$ BDR 500 HSA 10 TRT	L2 basic parameters (see section 1.4 for explanation) Transmitting from station 1 to station 2, STB 'Transmit' is in MB10. Receiving from station 2, STB 'Receive' is in MB11 (MB12 is reserved as length byte)
	brimorfic\%	
$\begin{aligned} & \text { 156: } \\ & \text { 168: } \\ & \text { 180: } \\ & \text { 192: } \\ & \text { 204: } \end{aligned}$		L2 basic parameter (see section 1.4 for explanation) Transmitting from station 2 to station 1, STB 'Transmit' is in MB21. Receiving from station 1, STB 'Receive' is in MB22 (MB23 is reserved as length byte)

After you have completed assigning the parameters, you have to set up the control program for the data exchange. The procedure for doing this is discussed in the next sections.

6.3 Programming Example for Data Transmission via PLC-to-PLC Connections Using Standard Function Blocks

This section explains the structure of the control programs for two programmable controllers.

Example:

PLC 1 and PLC 2 are to exchange data with one another, i.e., they will transmit and receive. Refer to section 6.1 for the description of the hardware configuration.

The control program in FB105 for transmitting data is structured as illustrated below.

The control program in FB15 for receiving data is structured as illustrated below.

Programmable Controller 1

Proceed as follows:
Assign parameters in DB1 of programmable controller 1 as described in section 6.2.
Program the individual blocks as described in the following section.
Transfer blocks DB1, OB1, FB5, FB105, DB21 and DB22 to programmable controller 1.

Cyclical Program for Station 1 (Programmable Controller 1)

Programmable controller 1 is to transmit data to programmable controller 2 and to receive data from programmable controller 2.
Function block L2-SEND triggers the data transmission in programmable controller 1. L2-SEND is called up in function block FB5 of programmable controller 2.
Function block L2-RECEIVE triggers the data reception. L2-RECEIVE is called up in function block FB105. FB5 and FB105 are called up in organization block OB1. The transmit data are stored in data block DB21. The received data are stored in data block DB22. Status byte 'Send' is flag byte FY10. Status byte 'Receive' is flag byte FY11.

Significance of the Parameters for FB5 and FB105:
ANST: Input Parameter Bit ('Send' initiation bit)
A request to transmit is triggered by bit ANST. You set bit ANST. When the job is completed without error, FB5 resets bit ANST. If initiation of a request to send ends with an error message in STBS or PAFE, the request to send is repeated automatically.

EMPF: Input Parameter Bit ('Receive' enable bit)
Receiving is enabled by bit EMPF. You set bit EMPF. When the job is completed without error, FB105 resets bit EMPF. If receiving ends with an error message in STBR or PAFE, the receive procedure is repeated automatically.

	-821 tor PLe\%	Explamation	
0 :	KY $=000,000$;	Send area to PLC 2	byte $1+2$
1:	KY $=000,000$;	Send area to PLC 2	byte $3+4$
2:	KY $=000,000$;	Send area to PLC 2	byte $5+6$
3:	кн $=0000$;		

Programmable Controller 2

Proceed as follows:
Assign parameters in the DB1 of programmable controllers 2 as described in section 6.2.
Program the individual blocks as described in the following section.
Transfer blocks DB1, OB1, FB1, DB21 and DB22 to programmable controller 2.

Cyclical Program for Station 2 (Programmable Controller 2)

Programmable controller 2 is to transmit data to programmable controller 1 and to receive data from programmable controller 1.
Function block L2-SEND in programmable controller 2 triggers the data transmission.
L2-SEND is called up in function block FB5 of programmable controller 1.
Function block L2-RECEIVE triggers the data reception in programmable controller 2.
L2-RECEIVE is called up in function block FB105.
FB5 and FB105 are called up in organization block OB1. The transmit data are stored in data block DB21. The received data are stored in data block DB22. Status byte 'Send' is flag byte 21. Status byte 'Receive' is flag byte 22.

Significance of the Parameters for FB5 and FB105:

ANST: Input Parameter Bit (trigger bit 'Transmit')
A transmit request is triggered by bit ANST. You set bit ANST. When the job is completed without error, FB5 resets bit ANST. If triggering of a transmit request ends with an error message in STBS or PAFE, the transmit request is repeated automatically.

EMPF: Input Parameter Bit (enable bit 'Receive’)
Receiving is enabled by bit EMPF. You set bit EMPF. When the job is completed without error, FB105 resets bit EMPF. If receiving ends with an error message in STBR or PAFE, the receive procedure is repeated automatically.

Fb5ion rucz			Explanation
SEGMENT 1		0000	
NAME	S $2=>1$		Transmitting from station 2 to station 1
des	ANST	I/Q/D/B/	
0009	:		Edge evaluation "Job completed without error" via STBS = flag byte FY21 STBS bit "Job completed without error" Edge auxiliary flag Edge flag "Job completed"
000A	:		
000в	:		
000c	: A	F 21.2	
0000	: AN	F 42.0	
000e	: =	F 42.1	
000F	:		If "Job completed without error", set edge auxiliary flag.
0010	: A	F 21.2	
0011	: =	F 42.0	
0012	:		If "Job completed" and no parameter assignment error is present, reset send initiating bit, reset send disabling bit.
0013	: A	F 42.1	
0014	: AN	F 42.7	
0015	: RB	=ANST	
0016	: R	F 42.5	
0017	:		
0018	: A	=ANST	If send initiating bit is set and send disabling bit is not set, reset edge auxiliary flag.
0019	: AN	F 42.5	
001A	: R	F 42.0	
001b	:		Call-up of FB L2-SEND
001 C	: JC	FB 252	
001D NAME	: L2-SEND		
001 E A-NR	: KY 0,1		Send to station 1
001 F QTYP	: KC DB		Send data are stored in a data block, DB number is 21 ,
0020 DBNR	: KY 0,21		
0021 QANE	: $\mathrm{kF}+0$		Three words are to be sent (DW0 to DW2). Note parameter assignment error message.
0022 QLAE	: KF + 3		
0023	: A	F 255.0	
0024	: $=$	F 42.7	If STBS bit "Job in progress" is set, set send disabling bit.
0025	:		
0026	: A	F 21.1	
0027	$=$	F 42.5	
0028	.		
0029	: BE		

Switch both programmable controllers from STOP to RUN.
Check the data transmission. This is done best with a programmer: Connect each programmable controller to a programmer and display the data blocks, the status bytes, and the parameter assignment error byte.

Refer also to section 3.3 "Starting up a System".
Appendix E gives you information on cycle delay times in the programmable controllers due to data transmission.

ॠた. Data Transmission Using cycic I\%

7.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Cyclic I/O 7-4
7.3 Controlling Data Transmission in the Control Program 7-7
7.4 Programming Example for Data Transmission via Cyclic I/O $7-12$

Fgures

7-1. Functional Diagram of Cyclic I/O 7-2
7-2. Diagram: Data Transmission Using Cyclic I/O 7-4
7-3. Division of the DB Reserved for Cyclic I/O (ZP) in the S5-95U (Example for ZP Master) 7-5
7-4. Division of the DB Reserved for Cyclic I/O (ZP) in the S5-95U (Example for ZP Slave) 7-5
7-5. Structure of the Status Byte (STB) for the ZP Master 7-8
7-6. Structure of the ZP Slave Life List 7-9
7-7. Structure of the Status Byte (STB) for the ZP Slave 7-10
tables
7-1. DB1 Parameters for Cyclic I/O 7-6
7-2. Assigning Parameters for Cyclic I/O 7-7
7-3. ZP Slave "Response Time" for the S5-95U Calculated from the Baud Rate at a Given Slot Time 7-11

7 Data Transmission Using Cyclic I/O

This chapter provides you with the following information:

- How this type of data transmission functions in principle
- How to set parameters for the programmable controllers
- How to program with STEP 5 for this type of data transmission (examples)

7.1 Features of Cyclic I/O

- Data transmission with cyclic I/O (ZP) is appropriate for the frequent transmission of small amounts of data between active S5-95Us and passive S5-95Us or field devices. Extensive programming is not required.
- A ZP station that scans other ZP stations is called a ZP master. A ZP master is always an active station on the SINEC L2 network.
A ZP station that is scanned by a ZP master is called a ZP slave. A ZP slave is generally a passive station on the SINEC L2 network. Exception: a ZP slave S5-95U can be either an active or a passive station on the SINEC L2 network.
The following devices can be ZP masters:
- an active S5-95U
- a CP 5430

The following devices can be ZP slaves:

- an active S5-95U
- a passive S5-95U
- a field device

Settings in DB1 determine master/slave status of an S5-95U.

- Each ZP master can service a maximum of 32 ZP slaves. Several ZP masters can request data in parallel from a ZP slave.
- A reserved data block (ZP DB) is responsible in the S5-95U for the word-by-word data exchange. The cyclic I/O input area (ZPE) and cyclic I/O output area (ZPA) for the respective stations are defined in data block ZP DB.
In the ZP master, the ZPE and the ZPA can each accept a maximum of 128 data words. In the ZP slave, the ZPE and the ZPA can each accept a maximum of 121 data words.
The input data and output data are available without requiring a request to transmit or a request to receive in the control program.
You set the parameters for the ZP DB and for the ZP areas in DB1.
- Status bytes (STBs) are available to control the cyclic I/O. ou set the parameters for the location of the STBs in DB1.

Principle of Operation

A reserved data block (ZP DB) is responsible in the S5-95U for the word-by-word data exchange. The cyclic I/O input area (ZPE) and cyclic I/O output area (ZPA) for the respective stations are defined in data block ZP DB.

Figure 7-1. Functional Diagram of Cyclic I/O

Explanations to Figure 7-1:

The boxes filled with a pattern represent the data areas (same pattern = same data area).
The user program writes the transmit data to the ZPA of the ZP master. The transmit data are transmitted automatically to the respective ZP slaves and written to their ZPE
At the same time, the contents of the ZP slave's ZPA are transmitted to the corresponding ZPE of the ZP master where the user program can evaluate them.
The ZP master creates a ZP slave life list containing all the states of the ZP slaves that the ZP master scans.

Note

You may read and write the complete ZPA.
You may only read out the ZPE.

Updating the Cyclic I/O Input Area and Output Area

There is an exchange of ZP data (ZPA, ZPE, and ZP status bytes) between the control processor and the communications processor at every cycle control point in the programmable controller's CPU program cycle.
The communications processor transmits ZP data cyclically via the network independently of the ZP cycle control point of the programmable controller's CPU operating system.
There is complete data consistency for ZPA and ZPE.

SAP Number

A ZP slave can be addressed only if the ZP master knows both the ZP slave address and its appropriate service access point (SAP).
You set the parameters for the ZP slave address and the ZP slave's SAP number in DB1 of the ZP master.
If you are using an S5-95U as a ZP slave, the SAP number is 61: You must set the SAP parameter in DB1 of the ZP master to 61.
If you are using a field device as a ZP slave, you can set the SAP parameter in DB1 of the ZP master from 0 to 62. Refer to Appendix B for more detailed explanations and for a list of all SAP numbers used with S5-95U programmable controllers.

Restart sequence when:

- powering up the PLC or
- switching the PLC from STOP to RUN following a "PLC overall reset" or
- switching the PLC from STOP to RUN after modification of the SL2 parameter block in DB1

Before executing the restart OBs (OB21/OB22), ZPA and ZPE are assigned the default value " 0 " in the ZP-DB. Bit 7 "ZP slave failure" or bit 7 "ZP master failure"in the STB is set (section 7.3).

Restart sequence when:

- switching the PLC from STOP to RUN without modification of the SL2 parameter block in DB1

ZPA is assigned the default value " 0 " in the ZP DB before execution of the restart OB (OB21). The input data presently available from the LAN are written to the ZPE in the ZP DB.

ZP Safety Function

When the programmable controller goes from RUN to STOP, ZPA and ZPE stay unchanged in the ZP DB.
When the programmable controller is in the STOP mode, the value "zero" is sent as ZP output data.
If a ZP slave fails, the ZP input bytes assigned to it in the ZP master are reset to 0 . If a ZP master fails, the $Z P$ input bytes assigned to it in the $Z P$ slave are reset to 0 .
You can read out the status of all the ZP slaves by means of the ZP slave life list (see section 7.3)

Communication with the CP 5430 Communications Processor

The CP 5430 communications processor is required when S5-95U programmable controllers communicate via cyclic I/O (ZP) with the SIMATIC S5-115U to S5-155U controllers. The CP 5430 functions as the ZP master. The S5-95U functions as the ZP slave. Section 7.2 describes how to set the parameters for the S5-95U.

You must enter the input/output areas and the SAP 61 as the destination into the ZP editor screen of COM CP 5430.

Refer to the SINEC L2 CP 5430 Operating Guide for additional information about the CP 5430.

7.2 Assigning Parameters in DB1 of the S5-95U for Data Exchange with Cyclic I/O

DB1 does not have default settings for ZP. Assign the following parameters:

- The ZP output area ZPA where the transmit data are located
- The ZP input area ZPE where the receive data are located
- The location of the status bytes

You must assign parameters in DB1 for the location of one status byte (STB). All status bytes must be in the flag area. The status byte indicates the status of the cyclic I/O and possible errors.
You can assign parameters in DB1 of the ZP master for a status byte that will allow you to get the ZP slave life list. Section 7.3 describes the structure of the status bytes and explains the ZP slave life list.
You set parameters for a ZP data block (ZP DB) in DB1. Figure 7-2 illustrates how DB1, the STBs , and ZP DB work together in a ZP master.

Figure 7-2. Diagram: Data Transmission Using Cyclic I/O

Both the entire ZP input area and the entire ZP output area of an S5-95U must be in one area without gaps in the ZP data block. The same ZPA or even data words from the ZPA of a ZP master can be specified for different ZP slaves.
Figures 7-3 and 7-4 illustrate this requirement with an example for a ZP master and an example for a ZP slave.
\qquad

Examples:

Figure 7-3. Division of the DB Reserved for Cyclic I/O (ZP) in the S5-95U (Example for ZP Master)

ZP DBx for ZP Slave

Figure 7-4. Division of the DB Reserved for Cyclic I/O (ZP) in the S5-95U (Example for ZP Slave)

The procedures to set and modify parameters in DB1 and to transfer DB1 are described in detail in section 1.4.

DB1 Parameters for Cyclic I/O
Table 7-1. DB1 Parameters for Cyclic I/O

* The next flag byte is reserved as length byte.

Example: Four $\mathrm{S5}-95 \mathrm{Us}$ are to communicate using cyclic I/O. Programmable controller 1 is the ZP master, programmable controllers 40,41 and 42 (all of them passive) are the ZP slaves. Some of the default parameters (represented shaded in Table 7-2) in DB1 need to be modified.

Table 7-2. Assigning Parameters for Cyclic I/O

Change parameters in the DB1s of PLC 41 and PLC 42 as you did for PLC 40.

7.3 Controlling Data Transmission in the Control Program

Each ZP master and each ZP slave is provided with a status byte to control cyclic I/O. The status byte indicates the ZP status and any errors that may have occurred.
The ZP master also creates a ZP slave life list that can be fetched by FB L2-RECEIVE (with job number A-NR 202). An additional status byte is necessary for this. See section 5.4 for information on the structure of the status byte for FB L2-RECEIVE.
You can scan the status bytes (STB) in the control program and program reactions to possible errors. You have already set the parameters for the location of the status bytes in data block DB1 (section 7.2).

Status Byte for the ZP Master

0: No ZPE cycle overflow
ZPE cycle overflow:
new ZP input data are available in DB ZP from all ZP slaves although the CPU could not yet take over the previous ZP input data.

0: No ZPA cycle overflow
ZPA cycle overflow:
The CPU has provided new ZP output data from the ZP DB to the communications processor although previous ZP output data could not yet be transmitted via the bus.

0: All ZP slaves transmitted the programmed number of ZP input data.
At least 1 ZP slave did not transmit the programmed number of ZP input data.

- If too many data were sent, the rest is discarded.
- If too few data were sent, the rest is filled up with " 0 ".

0 : ZP bus cycle is presently running.
A complete ZP bus cycle ended at the last ZP control point (before this OB1 cycle) (scanning of all the programmed ZP slaves by the ZP master):

- The newest ZP input data are available from all programmed ZP slaves and
- the ZP slave life list was updated in the communications processor.
Bit 3 stays set for one PLC-CPU program cycle.
0 : $\quad \mathrm{ZP}$ data in ZP DB and ZP slave life list are valid.
ZP data in ZP DB and ZP slave life list are temporarily invalid; previous ZP output data are being transmitted via the bus.

0: No ZP DB error
Programmed ZP DB is not available or ZP DB is too small; ZP image in ZP DB is invalid, ZP output data " 0 " are being transmitted via the bus.

0: No ZP configuration error
1: One error minimum has occurred in at least one ZP slave:

- SAP not activated or parameter settings incorrect.
- ZP slave has insufficient or no receiving resources;

ZP slaves concerned are entered on ZP slave life list and their ZP input area is set in ZP DB to " 0 ".

0: All ZP slaves okay
At least one ZP slave has failed, is still in the start-up phase or ZP master is still in the start-up phase; concerned ZP slaves are entered in ZP slave life list and their ZP input area in ZP DB is set to " 0 ".

Figure 7-5. Structure of the Status Byte (STB) for the ZP Master

ZP Slave Life List

The ZP master (S5-95U) creates a ZP slave life list that contains the status of of every ZP slave scanned by the ZP master. The remaining entries in the list are zeros.
There is an entry in the ZP slave life list when the ZP master scans the ZP slave and either a ZP configuration error (STB bit 6) or a ZP slave failure (STB bit 7) occurs.
The ZP slave life list contains 16 bytes. The state of every ZP slave is represented in bits 1 to 126 . Bit 0 and bit 127 are irrelevant $(=0)$.
You can fetch the ZP slave life list using FB L2-RECEIVE and store it as a consistent area (no gaps) in the flag area or in a data block.

Example: ZP slave life list is located in the flag area starting with flag byte FY2

Example: ZP slave life list is located in data block starting with data word DW2

Status 0: ZP slave is okay or is not scanned by this ZP master
Status 1: a " $Z P$ configuring error" or a "ZP failure" occurred with this ZP slave

Bit for station 0 is irrelevant $(=0)$
Figure 7-6. Structure of the ZP Slave Life List

You can fetch the ZP slave life list using FB L2-RECEIVE with job number A-NR 202. For this purpose, you need an additional STB for the ZP master (refer to section 5.4 for information on the structure of the STB of FB L2-RECEIVE). You assign STB parameters in DB1 under parameter ZPLI (see section 7.2).
The ZP slave life list can be fetched only if, in the corresponding STB, bit "Receive viable" is set. Bit "Receive viable" is set only if an error occurred at least in one of the ZP slaves.

Status Byte for the ZP Slave:

0: No ZPE cycle overflow
ZPE cycle overflow:
New ZP input data are available in ZP DB from ZP master although the CPU could not yet take over previous ZP input data.

0: No ZPA cycle overflow
1: ZPA cycle overflow:
The CPU has provided new ZP output data from the ZP DB to the communications processor although previous ZP output data could not yet be preprocessed for the bus.

0 : The ZP master transmitted the programmed number of ZP input data.
1: The ZP master did not transmit the programmed number of ZP input data:

- If too many data were sent, the rest is discarded.
- If too few data were sent, the rest is filled up with " 0 ".

0 : ZP bus cycle is presently running.
1: A ZP bus cycle ended at the last ZP control point (before this OB1 cycle) (scanning of the ZP slave by the ZP master):

- The newest ZP input data are available from the ZP master.

Bit 3 stays set for one PLC-CPU program cycle.
0: ZP data in ZP DB are valid.
1: ZP data in ZP DB are temporarily invalid; previous ZP output data are being transmitted via the bus.

0: No ZP DB error
1: Programmed ZP DB is not available or ZP DB is too small; ZP image in ZP DB is invalid, ZP output data " 0 " are transmitted via the bus.

0 : The ZP master is okay.
1: The ZP master has failed, is still in the start-up phase (ZP slave was not scanned within a certain "access time") or the ZP slave is still in the start-up phase; the complete ZPE in ZP DB is set to "0".
R: Read only
Irrelevant bit (=0)
Figure 7-7. Structure of the Status Byte (STB) for the ZP Slave

ZP Slave Watchdog

The S5-95U as a ZP slave has a watchdog. If the ZP slave is not scanned cyclically within the "response time" by a ZP master, bit 7 "ZP master failure" is set in the ZP slave status byte and the entire ZPE in ZP DB is set to zero.

Table 7-3 lists the ZP slave "response time" for the S5-95U calculated from the Baud rate at a given slot time.

Table 7-3. ZP Slave "Response Time" for the S5-95U Calculated from the Baud Rate at a Given Slot Time

Balde files		\&PSlaveniesponseflimek
9.6 kBaud	73 bit time units*	6 s
19.2 kBaud	76 bit time units*	3 s
39.75 kBaud	99 bit time units*	0.654 s
187.5 kBaud	170 bit time units*	0.381 s
500 kBaud	400 bit time units*	0.207 s
1500 kBaud	1000 bit time units*	0.125 s

* One bit time unit is the time it takes to transmit one bit (reciprocal value of baud rate)

If you are using a slot time that differs from the ones listed in Table 7-3 (permissible range for slot time: 50 to 4095), you can calculate the "response time" with the following formula:

$$
\begin{array}{ll}
\mathrm{T}_{\text {response }} & =140 \cdot\left(\mathrm{~T}_{\text {slot }}+341\right) \cdot \mathrm{T}_{\text {bit }} \\
\mathrm{T}_{\text {response }} & =\mathrm{ZP} \text { slave response time in seconds } \\
\mathrm{T}_{\text {slot }} & =\text { Slot time in bit time units } \\
\mathrm{T}_{\text {bit }} & =\text { Bit time units }=\frac{1}{\mathrm{bdr}} \text { in seconds }
\end{array}
$$

Minimum ZP slave response time: 100 ms (i. e., if the calculated $T_{\text {response }}$ is $<100 \mathrm{~ms}$, the minimum ZP slave response time is 100 ms)
Maximum ZP slave response time: 5 min (i. e., if the calculated $T_{\text {response }}$ is $>5 \mathrm{~min}$, the maximum ZP slave response time is 5 min)

Tolerance: $-0 \%+20 \% T_{\text {response }}$

7.4 Programming Example for Data Transmission via Cyclic I/O

This section explains the structure of the control programs for cyclic I/O.
The data are exchanged cyclically without request to transmit or request to receive: The data exchange is controlled within the control program only by the status byte.

Example:

An S5-95U (ZP master) is to supply data to three S5-95Us (ZP slaves, passive stations) and to receive data from them.

The control program in FB202 for ZP master is structured as illustrated below.

Cyclic Program for Station 1 (ZP Master)

In FB202, FB L2-RECEIVE scans the ZP slave life list for updated entries.
FB202 is called up from OB1.
The ZP slave life list is located in DB202. ZP DB for the ZP master is DB100. The status byte for the ZP slave life list is flag byte FY101. The status byte for the ZP master is flag byte FY100.

Proceed as follows:
Assign parameters for programmable controller 1 as the ZP master as described in section 7.2. Program the individual blocks as described in the following section.
Transfer blocks OB1, FB202, DB202, and DB100 to programmable controller 1.

DB202\% for					Explamation
0	км	$=00000000$	00000000;	ZP slave life list	
1	км	$=00000000$	00000000;		
2	км	$=00000000$	00000000;	Status of	Station 40= D 2.7;
3	км	$=00000000$	00000000;		Station 41 = D 2.6;
4	км	$=00000000$	00000000;		Station 42= D 2.5
5	км	$=00000000$	00000000;		
6	км	$=00000000$	00000000;		
7	км	$=00000000$	00000000;	Status of	station 126= D 7.1

Cyclical Program for Stations 40, 41, and 42 (ZP Slaves)

The structure of the programs is identical for the three ZP slaves. It is represented only once in the following section.
The status byte for the ZP slave is flag byte FY100. ZP DB for the ZP slave is DB100.
Proceed as follows:
Assign parameters for programmable controller 2 (station 40), programmable controller 3 (station 41), and programmable controller 4 (station 42) as ZP slaves as described in section 7.2. The only parameters you need to adapt specifically for each programmable controller are TLN (station number), ZPSA, and ZPSE.
Program the individual blocks as described in the following section.
Transfer blocks OB1 and DB100 to programmable controller 2 (station 40), programmable controller 3 (station 41), and programmable controller 4 (station 42).

Set the operating mode switches of the ZP master and the three ZP slaves to RUN.
Check the data transmission. This is done best with a programmer: Connect each programmable controller to a programmer and display the data blocks and the status bytes.

Refer also to section 3.3 "Starting up a System".
Appendix 5 gives you information on cycle delay times in the programmable controllers due to data transmission.

§\%. Data Transmission by Accessing Layer 2 Services

8.1 Characteristic Features of Layer 2 Access Data Transmission 8-2
8.2 Types and Characteristic Features of the Layer 2 Services 8-5
8.3 Assigning the S5-95U Parameters for Data Communications 8-9
8.4 FBs for Managing All Layer 2 Services 8-11
8.5 Sending Data to a Station (SDA Service) 8-15
8.6 Sending Data to Several Stations (SDN) 8-19
8.7 Holding Data for Fetching Once Only by a Station(RUP_SINGLE Service)8-23
8.8 Holding Data Ready for Fetching Several Times Over by One or More Stations (RUP_MULTIPLE) 8-26
8.9 Sending Data and Fetching Data from a Station (SRD Service) 8-29

Figums	\mathbb{N}_{k}		
	Example: Hardware Configuration Using Layer 2 Servic		8-2
	Function Model Using Layer 2 Services		8-3
	Using Job Numbers (A-NR) for Accessing Layer 2 Serv	ces via SAPs	8-6
	Request, Confirmation and Indication Structures		8-8
	Schematic: Data Transmission Using Layer 2 Services		8-9
$\text { 8-6. } \mathrm{S}$	Sending and Receiving Data with Acknowledgement or Confirmation (SDA)		8-15
	Structure of Requests, Confirmations and Indications fo	the SDA Service	8-16
	Sending and Receiving Data without Acknowledgemen Confirmation (SDN)		8-19
	Structure of Requests, Confirmations and Indications for	the SDN Service	8-20
8-10. H	Holding Data Ready for Fetching with the RUP_SINGL	Service	8-23
8-11. R	Request and Confirmation Structures for the RUP_SING	LE Service	8-24
8-12. H	Holding Data Ready for Fetching with the RUP_MULTIP	LE Service	8-26
8-13. R	Request and Confirmation Structures for the RUP_MU	TIPLE Service	8-27
8-14. S	Sending and Fetching Data with the SRD Service		8-29
8-15. S	Structure of Requests, Confirmations and Indications for	the SRD Service	8-30
\%oies\%			
8-1. L	Layer 2 Services of the L2 Interface of the S5-95U		8-5
8-2. D	Defining Job Numbers in the L2 FBs		8-9
8-3. L	Layer 2 Services, DB1 Parameters		8-10
8-4. E	Entering Parameters for Layer 2 Services		8-10
8-5. link	link_status Messages for SDA		8-17
8-6. lin	link_status Messages for SDN		8-21
8-7. lin	link_status Messages for the RUP_SINGLE Service		8-24
8-8. lin	link_status Messages for the RUP_MULTIPLE Service		8-27
8-9. lin	link_status Messages for the RUP_MULTIPLE Service		8-31
8-10. lin	link_status Messages (Indications) for the SRD Service		8-31

8 Data Transmission by Accessing Layer 2 Services

In this chapter, you will learn

- the basic principles underlying this type of transmission,
- how to assign the PLC's parameters, and
- what the STEP 5 programs for this type of transmission look like (examples).

The S5-95U with integral SINEC L2 interface has a control processor and a communications processor.

Certain parts of the communications section have defined designations.
The SINEC L2 transmission technology is referred to as "layer 1". The SINEC L2 interface of the S5-95U is implemented in RS 485 technology (section 1.6).
The operating system software of the communications processor is referred to as "layer 2". Some of these operating system programs (layer 2 services) can be invoked direct from the STEP 55 program.
The layer 2 services are also referred to as FDL (Fieldbus Data Link) services.
A layer 2 access must be activated before a layer 2 service can be invoked. You do this by assigning parameters in DB1 and programming a call in the control program. You can invoke several layer 2 services or invoke the same service more than once simultaneously. In this case, you must program several layer 2 accesses in DB1.

Data transmission by accessing layer 2 services is ideal for communications between S5-95Us and PROFIBUS-compatible programmable controllers or field devices that do not support the standard connection, PLC-to-PLC connection or cyclic I/O types of transmission.

S5-95U programmable controllers can also communicate with each other over layer 2 accesses, in which case the user-friendly standard connection, PLC-to-PLC connection or cyclic I/O types of transmission can be used (chapters 4, 6 and 7). Compared with the types of data transmission mentioned above, the programming overhead for layer 2 accesses is high.

8.1 Characteristic Features of Layer 2 Access Data Transmission

- Layer 2 accesses are used for communications between active stations or between active and passive stations.
- In DB1, you can program up to 23 layer 2 accesses for sending data and up to 23 layer 2 accesses for receiving data.
- You can send/receive up to 242 bytes of net data per job.
- You can send data in parallel over all configured layer 2 accesses.
- You can receive data in parallel over all configured layer 2 accesses.
- To communicate over configured layer 2 accesses, you need the integral standard function blocks L2-SEND and L2-RECEIVE (chapter 5).
- You must specify the following parameters for L2-SEND:
- a job number to identify a particular layer 2 access
- the data you wish to send
- You must specify the following parameters for L2-RECEIVE:
- a job number to identify a particular layer 2 access
- where the data received are to be stored.

Figure 8-1 shows a typical hardware configuration. The examples in section 8.3 refer to PLC 1 and PLC 2 in this configuration.

Figure 8-1. Example: Hardware Configuration Using Layer 2 Services

Principle of Operation

The principle of operation of layer 2 services is described in the following section, and the function model is shown in Figure 8-2.

The principle of operation of the various layer 2 services is explained in detail in the relevant sections of the manual (from section 8.5 onwards).

Sending PLC e.g. S5-95U
Active station on the LAN bus

Figure 8-2. Function Model Using Layer 2 Services

Explanation of Figure 8-2:
If there are no longer any jobs being executed over a layer 2 access, the 'Send' status byte indicates that sending is permissible. L2-SEND is invoked in the STEP 5 program (request).

L2-SEND receives the following information in the parameters passed to it:

- Job number of the layer 2 access used (programmed in DB1)
- The mailbox in which an 8-bit header and the net data to be transmitted are located.

The net data are send to the addressed receiver over the LAN. At the receiver end, a bit in the 'Receive' status byte indicates that data have arrived. The data (in the form of an indication) are fetched from the receiver with L2-RECEIVE.

Each request is confirmed. The confirmation header indicates whether the job has been executed with or without error(s).
(In the case of the SRD service, the confirmation consists of the header and net data requested by the receiver.)
The "receive viable" bit is set in the 'Send' status byte of the transmitter. The confirmation is fetched with L2-RECEIVE.

Request, Indication and Confirmation

Request:
A layer 2 service is invoked from the STEP 5 program with a request. The request consists of the request header and the net data to be sent.

The request header is interpreted by the communications processor of the sending PLC. The request header defines the layer 2 service to be used and the destination to which the net data are to be sent.

Indication:
The receiver receives the net data in the form of an indication. The indication consists of the indication header and the net data received.

The indication header contains the following information on the data received:

- The layer 2 service used,
- The priority with which the data were sent, and
- The station from which the data were sent.

Confirmation:
The sender receives information on whether the layer 2 service has been executed correctly or with error(s) in the form of a confirmation.

In the case of the layer 2 SRD service (section 8.9), the confirmation consists of the confirmation header and the net data received.
For all other layer 2 services (sections 8.5 to 8.8), the confirmation consists only of an 8-byte confirmation header.

The confirmation header tells you whether the job has been executed correctly or with error(s), and, in the latter case, which error(s) has (have) occurred.

Section 8.2 contains a description of the types and characteristic features of the layer 2 services and the format of the various headers.

8.2 Types and Characteristic Features of the Layer 2 Services

You have the following layer 2 services at your disposal:
Table 8-1. Layer 2 Services of the L2 Interface of the S5-95U

乡ave 2. Sevlice	Menvo. You usemis yaye. SEeryce?	Servicesangelused It the 5595 ums Passuye		Oeschiterin Section
SDA (Send Data with Acknowledge)	Active station sends data to one active or passive station.	X		8.5
SDN (Send Data with No Acknowledge)	Active station sends data to one or more active or passive stations.	X		8.6
RUP_SINGLE (Reply UPdate SINGLE)	Active or passive station holds data so that they can be fetched once by an active station.	X	X	8.7
RUP_MULTIPLE (Reply UPdate MULTIPLE)	Active or passive station holds data so that they can be fetched several times by one or more active stations.	X	X	8.8
SRD (Send and Request Data with Reply)	Active station sends data and/or fetches data from one active or passive station.	X		8.9

SAPs and Job Numbers

The communications processor has buffers for the data to be sent and the data received. These buffers are referred to as SAPs (Service Access Points to layer 2)

An SAP is addressed by assigning it a number. You have the SAPs with the numbers 33 to 54 and 64 (default SAP) at your disposal for invoking layer 2 services. To enable a SAP to be referenced from the STEP 5 program, a layer 2 access must be configured for it. You define the SAP number in DB1 for this purpose (section 8.3)

The interaction between STEP 5 programs and SAPs is explained in Figure 8-3. Figure 8-3 is explained on page 8-7.

Sending PLC (active)

Figure 8-3. Using Job Numbers (A-NR) for Accessing Layer 2 Services via SAPs

Explanation of Figure 8-3:
A request is passed to SAP 33 from the STEP 5 program by L2-SEND.
Job number (A-NR) 33 indicates that L2-SEND accesses SAP 33.
In the case of a request, the following always applies: Job number = SAP number
The communications processor sends the net data of the request to the receiver and deposits them in the SAP. This SAP number (destination SAP) must be specified in the request header (" 36_{H} " for SAP number 54 in the example). If you select the default SAP (SAP 64) as the destination SAP, you must specify " F_{H} " in the request header for SAP number 64.
The receiver can accept the indication (data received) from SAP 54 and write it into the STEP 5 program. L2-RECEIVE fetches the indication with job number 154.
In the case of an indication, the following always applies: \quad Job number $=$ SAP number +100
The sender receives a confirmation via the layer 2 service processed. L2-RECEIVE fetches the confirmation with job number 33.
In the case of a confirmation, the following always applies: Job number = SAP number
You define the job numbers when assigning the parameters to L2-SEND and L2-RECEIVE (chapter 5)

Storing the Send and Receive Data

The frame to be sent (request) consists of the 8-byte header (bytes 0 to 7) and the net data of up to 242 bytes.
The following information must be entered in the request header by the STEP 5 program:

- The type of layer 2 service requested
(SDA, SDN, SRD, RUP_SINGLE or RUP_MULTIPLE)
- The priority of the send message
("low" or "high"; Section 1.3 "Time Management of the Network")
- The SAP number of the receiver (= destination SAP)
- The address of the destination station

The communications processor confirms the request automatically. The confirmation header contains new information in the form of the link_status, which indicates whether the job has been carried out correctly or with error(s).
In the case of the layer 2 service SRD, the confirmation consists of the header and up to 242 bytes of net data.

The indication (frame received) consists of the 8 -byte header (bytes 0 to 7) with the address of the source station and up to 242 bytes of net data.

Figure 8-4 shows the general structure of a request (frame to be sent), confirmation and indication (frame received), in each case with header. The designation of the header bytes conforms to the PROFIBUS standard.
Request

Byte		
0	```com_class FDL_Request=00H (request for layer 2 service)```	
1	user_id User-definable ID (echoed in a confirmation)	
2	service_code Type of service requested	
	irrelevant	
4	Bits 4 to 7 service_class Priority of send frame	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	SAP No. of the receiver = destination SAP (hexadecimal)	
6	rem_add_station Address of the destination station (hexadecimal)	
7	rem_add_segment Logical segment address; always enter FF_{H} (no other segments can be currently addressed)	
8 \vdots 249	Send data (0 to 242 bytes)	

Indication Byte

0	com_classIndication= $\mathbf{0 2}_{\mathbf{H}}$(indication that data have beenreceived)	
	irrelevant	
2	service_code Type of service provided	
3	irrelevant	
4	Bits 4 to service_class Priority of receive frame	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	SAP No. of the sender = source SAP (hexadecimal)	
6	rem_add_station Address of source station (hexadecimal)	
7	rem_add_segment Logical segment address; is always FF $_{H}$ (no other segments can be currently addressed)	
249	Receive data (0 to 242 bytes)	

Figure 8-4. Request, Confirmation and Indication Structures

You can store the requests and indications (up to 250 bytes each) in the flag area or data area.
In view of the relatively large maximum amount of data, however, we advise you to use only the data area.
Section 8.5 describes the structure of requests, confirmations and indications for the special layer 2 services.

As a prerequisite for using layer 2 services, you must first

- specify an SAP number in DB1 (section 8.3)
- define two status bytes in DB1 (section 8.3)
- assign L2-SEND and L2-RECEIVE their parameters (section 8.3, chapter 5)
- create DBs for the request, the confirmation and the indication (from section 8.5 ff .).

8.3 Assigning the S5-95U Parameters for Data Communications

There is no default setting in DB1 for layer 2 accesses. You assign the following parameters in DB1:

- The location of a 'Send' status byte for L2-SEND and L2-RECEIVE with the corresponding SAP number.
- The location of a 'Receive' status byte for L2-RECEIVE with the corresponding SAP number.

All STBs must be in the flag area. The status byte flags the status of the send and/or receive job, and informs you of any errors (section 5.4).
The byte following the status byte is always reserved as the length byte. This byte indicates how many bytes of data have been received.

Defining the job numbers for a PLC (chapter 5):
Define a job number for the request and confirmation in L2-SEND.
Define a job number in L2-RECEIVE for the indication.
The following applies to a PLC: A-NR for request/confirmation = SAP number
A-NR for indication = SAP number +100.
Table 8-2. Defining Job Numbers in the L2 FBs

Figure 8-5 gives an example of the interaction of DBs, STBs and L2 FBs for data communications using layer 2 services.
In the example, the request is sent with L2-SEND and A-NR 48. The confirmation is fetched with ANR 48 and L2-RECEIVE. The status byte for both jobs is FY 77. The indication is fetched with A-NR 149 and L2-RECEIVE; the status byte is FY 79.

Figure 8-5. Schematic: Data Transmission Using Layer 2 Services
\qquad

The procedures to follow for entering, modifying and transferring DB1 are described in detail in section 1.4.

DB1 Parameters for Layer 2 Services
Table 8-3. Layer 2 Services, DB1 Parameters

Parametry	A gument	
STBS STBR	$\begin{aligned} & \mathrm{n} \text { MBx } \\ & \mathrm{n} \text { MBy } \end{aligned}$	SAP number and location of the 'Send' status byte SAP number and location of the 'Receive' status byte
Argument	Permiss. range	Explanation
$\begin{gathered} \mathrm{n} \\ \mathrm{MBx} \\ \mathrm{MBy} \end{gathered}$	$\begin{aligned} & 33 \text { to } 54,64^{*} \\ & 1 \text { to } 253 \\ & 1 \text { to } 253 \end{aligned}$	SAP number Flag byte** Flag byte**

* SAP 64 is the default SAP
** The next flag is reserved as length flag.
Retentive flags are also overwritten with 00_{H} on a cold PLC restart.

Example: Two S5-95Us communicating with each other using layer 2 services.
Table 8-4. Entering Parameters for Layer 2 Services

		beyprem	Explamation
$\begin{aligned} & \text { 156: } \\ & \text { 168: } \\ & \text { 180: } \\ & \text { 192: } \\ & \text { 204: } \\ & \text { 216: } \end{aligned}$	KS KS KS KS KS KS	$=$ = SL2: TLN $1 \quad$ STA AKT'; $=$ = BDR 500 HSA 10 TRT '; $=15120$ SET 0 ST 400 $=$ ='SDT 112 SDT 2360 $=$ Nル! $=$ =.	Basic L2 parameters (for description see 1.4) Sending via SAP No. 48, 'Send' STB = FY 77; Receiving via SAP No. 49, 'Receive' STB = FY 79 (FY 78 and 80 are reserved as length bytes)
		DB1\%RLCR	
156:	KS KS KS KS KS KS	$=$ ' SL2: TLN 2 STA AKT'; $=$ = BDR 500 HSA 10 TRT '; ='5120 SET 0 ST 400 $=$ ='SDT 112 SDT 2360 $=$ Mल 	Basic L2 parameters (section 1.4)

Once you have assigned the parameters, you must develop the control program for data communications. You will learn how to do this in the next section.

8.4 FBs for Managing All Layer 2 Services

FB223 and FB224 enable you to transmit data using layer 2 services with minimal programming overhead. You only need to program these FBs once for an S5-95U. The FBs can be used for all layer 2 services.

Structure of the Control Program for Sending the Request and Fetching the Confirmation in FB223

Prerequisites for executing FB223 according to the following schematic:

- You have programmed DB33 with header and send data.
- You have set the send initiation bit in OB1 and invoked FB223 (OB1 is shown in the various sections on the services, namely, 8.5 to 8.9).

Job completed without error (STBS bit $2=1$)?			
Yes No			
Reset send initiation bit			
Send job executing (STBS bit $1=1$)?			
Yes No			
		Invoke L2-SEND	
		Evaluate parameter assignment error byte	
RECEIVE viable (STBS bit $0=1$)?			
Yes No			
Invoke L2-RECEIVE			
Evaluate parameter assignment error byte			
Output link_status			
End			

You must evaluate the link_status once FB223 has executed.

Structure of the Control Program for Fetching the Indication in FB224

Prerequisites for executing FB224 according to the following schematic:

- You have generated DB34.
- You have set the "EMPF" bit in OB1 and invoked FB224 (OB1 is shown in the various sections on the services, namely, 8.5 to 8.9).

You must evaluate the link_status once FB224 has executed.

Meaning of the Parameters of FB223 and FB224:

"ANST": Input parameter bit

The request job is initiated when this bit is set. Set the bit before invoking FB223. FB223 resets the bit once L2-SEND and L2- RECEIVE have executed without error.

"LSTA": Output parameter byte

FB223 tells you the link status of the confirmation. The link status indicates the success or failure of the preceding request. You can evaluate the link_status in flag byte 9 .
"EMPF": Input parameter bit
This parameter enables receipt of an indication. Set this bit before invoking FB224. FB224 resets the bit once the indication has been received without error(s).

FR223 (Conty	Explanation
	***** Save parameter assignment error byte for subsequent evaluation ***** If STBS "Receive viable" set Invoke L2-RECEIVE Job number for confirmation $=48$ Data are in DB33 starting at DW 10 (4-byte header) Save parameter assignment error byte for subsequent evaluation ***** Open working DB (DB33 in this case) Output link_status of the confirmation

In the following sample programs for the various layer 2 services (sections 8.5 to 8.9), data are interchanged between two stations on the SINEC L2 LAN. Both stations are S5-95Us and have the station addresses TLN 1 and TLN 2.
The parameters to be assigned to the layer 2 accesses are listed in section 8.3, Table 8-4. It is assumed that you have already configured the DB1s.

Once you have completely developed your program for using a layer 2 service, start up your PLC.
Proceed as follows:
Switch the mode selector of the PLC to RUN.
Data transmissions are best checked by means of a programmer. Connect a programmer to each PLC and have it display the DBs, the status bytes and the parameter assignment error byte. (The format of the status bytes and parameter assignment error byte are shown in chapter 5.).

Read also section 3.3 "Starting Up a System".
Appendix E contains the cycle delay times of the PLC in connection with data transmissions.
\qquad

8.5 Sending Data to a Station (SDA Service)

The SDA (Send Data with Acknowledge) layer 2 service is used if an active station is to send data to an active or passive station.

Data transmission schematic (Figure 8-6):
The request (header + net data to be transmitted) in the flag or data area is sent with L2-SEND (= request an layer 2).
The 'Receive" status byte informs the receiver that an indication has arrived.
The receiver fetches the indication (header + net data received) with L2-RECEIVE.
The 'Send' status byte informs the sender that a confirmation has been transmitted.
The sender fetches the confirmation (= header) with L2-RECEIVE.

Figure 8-6. Sending and Receiving Data with Acknowledgement or Confirmation (SDA)

Figure 8-7 describes the structure of requests, confirmations and indications for the SDA service.

Request

Confirmation
Byte

0	com_class Confirmation $=01_{\mathrm{H}}$	
1	user_id ID assigned in connection with a request	
2	service_code Type of service: $S D A=00_{H}$	
3	link status (Table 8-5)	
4	Bits 4 to 7 service_class Priority of the send message low $=0_{H}$ or high $=1_{H}$	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	Destination SAP 0 to 62, FF (=default SAP 64)	
6	rem_add_station Address of the destination station (1 to 126)	
7	rem_add_segment Logical segment address; is always FF_{H}	

Indication
Byte

0	com_class Indication $=\mathbf{0 2}_{\mathbf{H}}$	
	irrelevant	
2	service_code Type of service: SDA $=00_{\mathrm{H}}$	
3	irrelevant	
4	Bits 4 to 7 service class priority of receive frame low $=0_{H}$ or high $=1_{H}$	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	Source SAP 0 to 62, FF (=default SAP 64)	
6	rem_add_station Address of source station (1 to 126)	
7	rem_add_segment Logical segment address; is always FF_{H}	
849	Receive data (0 to $\mathbf{2 4 2}$ bytes)	

Must be specified by the user in the request header

Figure 8-7. Structure of Requests, Confirmations and Indications for the SDA Service
\qquad
link_status Message in the Confirmation Header
Table 8-5. link_status Message for SDA

yalue of lolastatus	Aboreviation Pforisus)	Meaning
00 ${ }_{\text {H }}$	ok	Positive acknowledgement, service executed
$0^{1} \mathrm{H}$	ue	Negative acknowledgement; remote PLC is in STOP mode Prerequisite: Destination station is an S5-95U and the connection has been properly configured at the destination station
02H	rr	Negative acknowledgement; resources of remote FDL control not available
03 ${ }_{H}$	rs	service_code or rem_add_station not activated at the remote station
11_{H}	na	No response from remote station or response not plausible
15_{H}	iv	- Illegal parameters in the request header or - Local station is passive or - Destination station is own station address or - If own SAP = default SAP*: destination SAP is not default SAP or - own SAP default SAP*: destination SAP is default SAP

* SAP 64 is defined as the default SAP.

Invoking FB223 for SDA

Invoking FB224 for SDA

ORA Receming PLC)	Explanation
	Fetch indication (section 8.4) Enable receive

Storing Request and Confirmation at the Sender

	\#\#\#\# 0833	
0 :	KH = 0000;	****Request frame ${ }^{* * * *}$
1:	KY = 000,000;	com_class / user_id
2:	KY = 000,000;	service_code / irrelevant
$3:$	KY = 000,048;	service_class/destination SAP
4:	KY = 002,255;	rem_add_station / rem_add_segm
5:	KH $=$ AAAA;	Data bytes 1 and 2
6:	KH $=$ BBBB;	Data bytes 3 and 4
$7:$	кн $=$ CCCC;	Data bytes 5 and 6
$8:$	KH = DDDD;	Data bytes 7 and 8
$9:$	KH = 0000;	****Confirmation frame****
10:	KY = 001,000;	com_class / user_id
11:	KY = 000,000;	service_code / link_status
12:	KY = 000,048;	service_class / destination SAP
13:	KY = 002,255;	rem_add_station / rem_add_segm
14:	кн = 0000;	

Storing the Indication at the Receiver

		explanation	
:			
8:	KH = 0000;		
9 :	KH = 0000;	****Indication frame****	
10:	KY = 002,000;	com_class / irrelevant	
11:	KY = 000,000;	service_code / irrelevant	
12:	KY $=000,048$;	service_class / source SAP	
13:	KY = 001,255;	rem_add_station / rem_add_segm	
14:	$\mathrm{KH}=$ AAAA;	Receive data from sender	
15:	$\mathrm{KH}=\mathrm{BBBB}$;		
16:	кн = СССС;		
17:	KH = DDDD;		
18:	KH = 0000;		

8.6 Sending Data to Several Stations (SDN)

The SDA (Send Data with No Acknowledge) layer 2 service is used if an active station is to send data to several active or passive stations (multicasting).

Data can also be sent to one active or passive station with the SDN service. However, SDA is better suited for this (section 8.5).
SDN has the following disadvantage compared with SDA:
The confirmation received by the sender contains no information on whether the data have been correctly received or not. The sender only receives confirmation from its local communications processor that the data have been sent off properly.

Prerequisites for multicasting:

- You must assign the same receive SAP in the DB1s of all receiving stations (section 8.3).
- You must enter the global address for multicasting "127" in byte 6 of the request header.

Data transmission schematic (Figure 8-8):
The request (header + net data to be transmitted) in the flag or data area is sent with L2-SEND (request to layer 2).
The 'Receive" status byte informs all receivers that an indication has arrived.
Each receiver fetches the indication (header + net data received) with L2-RECEIVE.
The 'Send' status byte informs the sender that a confirmation has been transmitted.
The sender fetches the confirmation (= header) with L2-RECEIVE.

Figure 8-8. Sending and Receiving Data without Acknowledgement or Confirmation (SDN)
\qquad

Figure 8-9 shows the request, confirmation and indication structures for the SDN service

Request

0	
1	user id User-definable ID
2	shinee oome SOH 0 n
3	irrelevant
4	
5	
6	 sthion 1502604127 for Mullicist)
7	Inn add Seanent egiedsemmelsictess always enterf:
8 \vdots 249	\qquad

Indication
Byte

0	$\begin{gathered} \text { com_class } \\ \text { Indication=02 } \end{gathered}$	
	irrelevant	
2	$\begin{gathered} \text { service_code } \\ \text { Type of service: } \text { SDN }^{\text {S }} \mathbf{0 1} 1_{\mathrm{H}} \text { or } \\ \text { SDN } \\ \text { Multicast }=7 F_{\mathrm{H}} \end{gathered}$	
3	irrelevant	
4	Bits 4 to 7 service_class priority of receive frame low $=0_{\mathrm{H}}$ or high $=1_{H}$	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	Source SAP 0 to 62, FF (=default SAP 64)	
6	rem_add_station Address of source station (1 to 126)	
7	rem_add_segment Logical segment address; is always FF_{H}	
8 249	Receive data (0 to 242 bytes)	

Must be specified by the user in the request header

Figure 8-9. Structure of Requests, Confirmations and Indications for the SDN Service
\qquad
link_status Message in the Confirmation Header
Table 8-6. link_status Messages for SDN

* SAP 64 is defined as the default SAP.

Invoking FB223 for SDN

Invoking FB224 for SDN

\qquad

Storing Request and Confirmation at the Sender

Storing the Indication at the Receiver

	D834	Exolanation
!		
$8:$	KH $=0000$;	
9 :	кH $=0000$;	****Indication frame ${ }^{* * * *}$
10:	KY = 002,000;	com_class / irrelevant
11:	KY = 001, 000;	service_code / irrelevant
12:	KY $=000,048 ;$	service_class / source SAP
13:	KY = 001,255;	rem_add_station / rem_add_segm
14:	KH = AAAA;	Receive data from sender
15:	кH = вBBB;	
16:	кн = CCCC;	
17:	KH = DDD ;	
18:	кн $=0000$;	

8.7 Holding Data for Fetching Once Only by a Station (RUP_SINGLE Service)

The RUP_SINGLE (Reply UPdate SINGLE) service is used for holding data for fetching in an active or passive station. The data held can be fetched by an active station once only, using the SRD service (section 8.9).

Before the sender requests data from the receiver (SRD layer 2 service), the receiver must keep the data ready in an SAP.
The receiver uses either the RUP_SINGLE or RUP_MULTIPLE service to do this (section 8.8).
The RUP_SINGLE service holds the requested data ready for once-only fetching. If an active station requests data cyclically, this guarantees that it always receives new data.
Reason : Once the sender has read the data out of the SAP, the latter is empty. When the SAP is empty, i.e. no new data are yet pending, the sender receives a confirmation header (SRD layer 2 service).
New data are written into the SAP at the next RUP_SINGLE or RUP_MULTIPLE.
Data holding procedure for the receiver (Figure 8-10):
The request (header + net data to be held ready for fetching) in the flag or data area is sent with L2-SEND (request to layer 2).
The 'Send' status byte informs the receiver that a confirmation has been transmitted, and the receiver fetches the confirmation (= header) with L2-RECEIVE.

Figure 8-10. Holding Data Ready for Fetching with the RUP_SINGLE Service
Since the receiver sends data to itself with the RUP_SINGLE service, you must specify the same SAP in DB1 for sending and receiving (section 8.3). The destination SAP in the request header is irrelevant.
Figure 8-11 shows the request and confirmation structures for the RUP_SINGLE service.
\qquad

Figure 8-11. Request and Confirmation Structures for the RUP_SINGLE Service
link_status Message in the Confirmation Header
Table 8-7. link_status Messages for the RUP_SINGLE Service

Value of link staws	abomeviation PIO FiAls	Meantg
$0^{0} \mathrm{H}$	ok	Positive acknowledgement; data ar
06_{H}	no	Receive SAP not activated; receive S
14_{H}	Ir	Response resource being used at the (temporary fault)
15_{H}	iv	Illegal parameters in the request head

\qquad

Invoking FB223 and FB224 with the RUP_SINGLE Service in the Receiving PLC (holds data ready for fetching)

Invoking FB223 with the SRD Service in the Sending PLC (to fetch the data)

Storing Request and Confirmation at the Receiver Using the RUP_SINGLE Service (holding data ready for fetching)

	DB33	Explanation
0 :	кH $=0000$;	${ }^{* * * *}$ Request frame, RUP_SINGLE service**** com_class / user_id service_code / irrēevant service_class / irrelevant irrelevant / rem_add_segm Data bytes 1 and 2 Data bytes 3 and 4 Data bytes 5 and 6 Data bytes 7 and 8 ***Confirmation frame, RUP_SINGLE service ${ }^{* * *}$ com_class / user_id service_code / link _status service_class / irrelevant irrelevañt / rem_add_segm
1:	KY $=000,000$;	
2:	KY $=006,000$;	
3:	KY $=000,000$;	
4:	KY $=000,000$;	
5:	кH = 1111;	
6:	кH $=2222$;	
7:	кH = 3333;	
$8:$	KH $=4444$;	
9:	кн $=0000$;	
10:	KY $=001,000$;	
11:	KY = 006,000;	
12:	KY $=000,000$;	
13:	KY $=000,255$;	
14:	KH $=0000$;	

8.8 Holding Data Ready for Fetching Several Times Over by One or More Stations (RUP_MULTIPLE Service)

The RUP_MULTIPLE (Reply UPdate MULTIPLE) service is used for holding data for fetching in an active or passive station. The data held can be fetched by an active station several times over, using the SRD service (section 8.9) ; from either one or several active stations.

Before the sender requests data from the receiver (SRD layer 2 service), the receiver must keep the data ready in an SAP.
The receiver uses either the RUP_SINGLE or RUP_MULTIPLE service to do this (section 8.8).
The RUP_MULTIPLE service ensures that the SAP keeps the requested data ready for fetching until the SAP is overwritten by a new RUP_SINGLE or RUP_MULTIPLE. The data in the SAP can therefore be read out several times.

If only one station is to fetch the data, this is also possible with the RUP_MULTIPLE service, but is better done with the RUP_SINGLE service.(section 8.7).
Reason: If the RUP_MULTIPLE service is used, the sender cannot distinguish between new data and data that have already been requested.

Data holding procedure for the receiver (Figure 8.12):
The request (header + net data to be held ready for fetching) in the flag or data area is sent with L2-SEND (request to layer 2).
The 'Send' status byte informs the receiver that a confirmation has been transmitted, and the receiver fetches the confirmation (= header) with L2-RECEIVE.

Figure 8-12. Holding Data Ready for Fetching with the RUP_MULTIPLE Service

Since the receiver sends data to itself with the RUP_MULTIPLE service, you must specify the same SAP in DB1 for sending and receiving (section 8.3). The destination SAP in the request header is irrelevant.
\qquad

Figure 8-13 shows the request and confirmation structures for the RUP_MULTIPLE service.

Must be specified by the user in the request header
Figure 8-13. Request and Confirmation Structures for the RUP_MULTIPLE Service

link_status Message in the Confirmation Header

Table 8-8. link_status Messages for the RUP_MULTIPLE Service

Yaiue or linkstaus	Abofeviation Promisus)	MeanH\%
$0^{0}{ }_{H}$	ok	Positive acknowledgement; data area loaded
$0^{06} \mathrm{H}$	no	Receive SAP not activated; receive SAP not equal to send SAP
14^{H}	Ir	Response resource being used at the moment by MAC (temporary fault)
${ }^{15} \mathrm{H}$	iv	Illegal parameters in the request header

Invoking FB223 and FB224 with the RUP_MULTIPLE Service in the Receiving PLC (holds data ready for fetching)

Invoking FB223 with the SRD Service in the Sending PLC (to fetch the data)

Storing Request and Confirmation at the Receiver Using the RUP_MULTIPLE Service (holding data ready for fetching)

	D833	Explanation
0 :	KH $=0000$;	****Request frame, RUP_MULTIPLE service ${ }^{* * * *}$ com_class / user_id service_code / irvelevant service_class / irrelevant irrelevant / rem_add_segm Data bytes 1 and 2 Data bytes 3 and 4 Data bytes 5 and 6 Data bytes 7 and 8 ${ }^{* * * *}$ Confirmation frame, RUP_MULTIPLE service**** com_class / user_id service_code / link_status service_class / irrelevant irrelevant / rem_add_segm
1:	KY $=000,000$;	
2:	KY = 007,000;	
3:	KY $=000,000$;	
4:	KY $=000,000$;	
5:	кн = 1111;	
$6:$	кH $=2222$;	
7:	KH $=3333 ;$	
$8:$	кH $=4444$;	
9 :	кн $=0000$;	
10:	KY $=001,000$;	
11:	KY = 007,000;	
12:	KY = 000, 000;	
13:	KY $=000,255 ;$	

8.9 Sending Data and Fetching Data from a Station (SRD Service)

The SRD (Send and Request Data with Reply) layer 2 service is used by an active station to send data to an active or passive station and/or fetch data from an active or passive station.

Prerequisite for data transmission:
You must hold data requested by the sender ready for fetching with the RUP_SINGLE (section 8.7) or RUP_MULTIPLE layer 2 service (section 8.8)

Data transmission schematic (Figure 8-14):
The request (header + net data to be transmitted) in the flag or data area is sent with L2-SEND (request to layer 2).
The 'Receive" status byte informs the receiver that an indication has arrived.
The receiver fetches the indication (header + net data received) with L2-RECEIVE.
The 'Send' status byte informs the sender that a confirmation has been transmitted.
The sender fetches the confirmation (= header + net data requested by the receiver) with L2RECEIVE.

Figure 8-14. Sending and Fetching Data with the SRD Service

Requesting Data (SRD Layer 2 Service without Send Data)

If you do not want your sender to send any data to the receiver, but only request data from the receiver, use the special case of the "SRD without send data" layer 2 service.

Prerequisite for data transmission:
You must hold data requested by the sender ready for fetching with the RUP_SINGLE (section 8.7) or RUP_MULTIPLE layer 2 service (section 8.8).

Fetching the data by the sender (Figure 8-14):
The request (header + net data to be transmitted) in the flag or data area is sent with L2-SEND (request to layer 2).
The 'Receive" status byte informs the receiver that an indication has arrived.
The receiver fetches the indication (header) with L2-RECEIVE.
The 'Send' status byte informs the sender that a confirmation has been transmitted.
The sender fetches the confirmation (= header + net data requested by the receiver) with L2RECEIVE.

Figure 8-15 shows the request confirmation and indication structures for the SRD service

Byte	Confirmation	
0	com_class Confirmation $=01_{\mathrm{H}}$	
1	user id ID assigned in connection with a request	
2	service_code Type of service: SRD $=03_{H}$	
3	link status (Tab̄le 8-9)	
4	Bits 4 to 7 service_class Priority of the send message low $=0_{H}$ or high $=1_{H}$	$\begin{array}{\|c} \text { Bits } 0 \text { to } 3 \\ 0 \end{array}$
5	Destination SAP 0 to 62, FF (=default SAP 64)	
6	rem add station Address of the destination station (1 to 126)	
7	rem_add_segment Logical segment address; is always FF_{H}	
8 249	Data held ready by the receiver for fetching (0 to 242 bytes)	

Byte	Indication	
0	com_class Indication $=02_{\mathrm{H}}$	
1	irrelevant	
2	service code Type of service: SRD $=03_{\mathrm{H}}$	
3	link status (TabTe 8-10)	
4	Bits 4 to 7 service_class Priority of receive message OW= ${ }^{2}$ or high $=1_{H}$	$\begin{gathered} \text { Bits } 0 \text { to } 3 \\ 0 \end{gathered}$
5	Source SAP 0 to 62, FF (=default SAP 64)	
6	rem add station Address of source station (1 to 126)	
7	rem_add_segment Logical segment address; is always FF_{H}	
8 249	Receive data (0 to 242 bytes)	

Must be specified by the user in the request header
Figure 8-15. Structure of Requests, Confirmations and Indications for the SRD Service
\qquad
link_status Message in the Confirmation Header
Table 8-9. link_status Messages for the SRD Service

Value ot Im民 status	aboreviation (FROFEUS)	Meanmg	
$08^{\text {H }}$	dl	Positive acknowledgement for data sent; reply data with low priority available	
$0 A_{H}$	dh	Positive acknowledgement for data sent; reply data with high priority available	
0^{09}	nr	Positive acknowledgement for data sent; negative acknowledgement for reply data	
$0^{1} \mathrm{H}$	ue	Negative acknowledgement; remote PLC is in the STOP mode Prerequisite: Destination station is an $\mathrm{S} 5-95 \mathrm{U}$ and the connection has been properly configured at the destination station	
02H	rr	Negative acknowledgement; resources of the remote FDL control not available	
03_{H}	rs	service_code or rem_add_station not activated at the remote station	
11_{H}	na	No response from remote station or response not plausible	
15_{H}	iv	- Illegal parameters in the request header or - Local station is passive or - Destination station is own station address or - If own SAP = default SAP*: destination SAP is not default SAP or - own SAP default SAP*: destination SAP is default SAP	

* SAP 64 is defined as the default SAP.
link_status Message in the Indication Header
Table 8-10. link_status Messages (Indications) for the SRD Service

Value of luk status	Abbreviation Profrus.	Meaming
$20^{\text {H }}$	10	The reply to this SRD transaction was made with lowpriority data
21_{H}	hi	The reply to this SRD transaction was made with highpriority data
22^{2}	no_data	No reply data were transmitted in connection with this SRD transaction

\qquad

Invoking FB223 for SRD

Invoking FB223 and FB224 for the RUP_SINGLE and/or RUP_MULTIPLE Service in the Receiving PLC (to hold data ready for fetching)

Storing Request and Confirmation at the Sender

	D833	Explanation
0 :	кH $=0000$;	${ }^{* * * *}$ Request frame ${ }^{* * * *}$
1:	KY $=000,000$;	com_class / user_id
2:	KY = 003,000;	service_code / irrelevant
3:	KY $=000,048 ;$	service_class / destination SAP
4:	KY $=002,255 ;$	rem_add_ station / rem_add_segm
5:	KH $=$ AAAA;	Data bytes 1 and 2
6:	кH $=$ BBBB;	Data bytes 3 and 4
7:	кн $=$ cccc;	Data bytes 5 and 6
8:	$\begin{aligned} & \mathrm{KH}=\mathrm{DDDD} ; \\ & \mathrm{KH} \\ & \text { d }\end{aligned}$	Data bytes 7 and 8 (${ }_{\text {***** }}$
9:	KH $=0000$;	${ }^{* * * *}$ Confirmation frame****
10:	KY $=001,000$;	com_class / user id
11:	KY = 003,000;	service_code / link_status
12:	KY $=000,048 ;$	service_class / destination SAP
13:	KY $=002,255$;	rem_add_station / rem_add segm
14:	KH $=1111$;	Net data from the RUP_SINGLE and/or
15:	KH $=2222$;	RUP_MULTIPLE service
16:	KH $=3333$;	
17:	KH $=4444 ;$ $\mathrm{KH}=0000$	

Storing the Indication at the Receiver

	D834	Explanation
8:	KH $=0000$;	
9:	KH $=0000$;	com class/ irrelevant
11:	KY = 003,032;	service_code / link_status
12:	KY $=000,048$;	service_class / source SAP
13:	KY = 001,255;	rem_add_station / rem_add_segm
14:	KH $=$ AAAA;	Receive data from the sender
15:	кн = вBBB;	
16:	кн = cccc;	
17:	KH = DDDD;	
18:	кH $=0000$;	

§. Programmer Functions over the SiNEC I? Networt

9.1 Programmer Functions $\ldots \ldots \ldots$......................... 9

9.3 Entering Defaults .. 9-4
9.4 Editing a Path .. 9-5
9.5 Setting the L2 Basic Parameters on the Programmer 9-10
9.6 Activating an Editing Path ... 9-10

Figums

9-1. "INTERFACE SELECTION" Screen 9-3
9-2. The "FUNCTION SELECTION/DEFAULTS" Screen of the "BUS DIALLING" Utility 9-4
9-3. Path to be Edited with the "BUS DIALLING" Utility 9-5
9-4. Screen for Editing a Path (1) 9-6
9-5. Screen for Editing a Path (2) 9-7
9-6. Screen for Activating a Path (1) 9-8
9-7. Screen for Activating a Path (2) 9-9
9-8. "SYSID CP L2 (LOCAL)" Screen 9-10
тables
9-1. Functions of a Programmer Operated as a SINEC L2 Station 9-2

9 Programmer Functions Over the SINEC L2 Network

This chapter will show you

- which programmer functions can be implemented over the SINEC L2 LAN for the S5-95U,
- how to establish the connection to a remote station from the programmer, and
- how to activate the connection.

You can operate the programmer as a station on the SINEC L2 LAN. Address TLN 0 is reserved for the programmer.

Prerequisites:
To program the S5-95U over the SINEC L2 LAN, you must assign the necessary SINEC L2 interface parameters in DB1.
At least the basic parameters must be in DB1. You will find tables of the basic parameters in section 1.4 of the manual. You must set these parameters in the S5-95U for the CP 5410 (PG 730/750/770 programmers) or CP 5412 (PG 685 programmer).
Important: Programmer functions over the SINEC L2 LAN can only be implemented for active S595Us. Station status "STA AKT" must therefore be specified as a basic parameter in DB1.
FMA services and the standard connection, PLC-to-PLC connection and cyclic I/O types of data transmission, and layer 2 services can also be configured in addition to the programmer functions.

Note:
If you switch the PLC from STOP to RUN following a "PLC overall reset", the SINEC L2 interface parameters are not set and the PLC cannot be programmed over the SINEC L2 LAN.

Reason: Following a "PLC overall reset" and a change from STOP to RUN mode, the default DB1 is again valid in the PLC. The SINEC L2 parameter block is within comment characters (\#) in default DB1, and is therefore not interpreted by the PLC.

Remedy: Overwrite each comment character with a blank character; set the basic parameters
(section 1.4); transfer the modified DB1 to the PLC, and switch the PLC from STOP to RUN mode.

To reach an S5-95U over the SINEC L2 LAN from the programmer, you must edit the corresponding path with the programmer's "Bus dialling" utility and store this path in a path file.
You can then activate the edited path for the particular station.
You need S5-DOS (version V and later) to select a remote station over the SINEC L2 LAN. The following programmers can be operated currently as stations on the SINEC L2 LAN:

- PG 685 (together with CP 5412)
- PG 730 (together with CP 5410B or CP 5410B/FlexOS)
- PG 750 (together with CP 5410B or CP 5410B/FlexOS)
- PG 770 (together with CP 5410B or CP 5410B/FlexOS)

9.1 Programmer Functions

The S5-95U can only be operated as a programmer slave on the SINEC L2 LAN, i.e. you cannot

- implement programmer functions over the LAN at another station from the control program of an S5-95U,
- implement programmer functions at another station on the LAN through the programmer interface of an S5-95U.
Table 9-1 lists all the functions that can be implemented from a programmer over the SINEC L2 LAN.

Table 9-1. Functions of a Programmer Operated as a SINEC L2 Station

9.2 Selecting the L2 Interface

You can select the SINEC L2 interface with the programmer's "INTERFACE SELECTION" function (key <F5> (INT) in the "PACKAGE SELECTION" screen. This screen lists only the interfaces you can select.

Press cursor key $<>$ or $<>$ in the "INTERFACE SELECTION" screen until the SINEC L2 interface appears in the message bar (Figure 9-1), and confirm with <F6> (SAVE):

Figure 9-1. "INTERFACE SELECTION" Screen

9.3 Entering Defaults

When you have confirmed your choice of interface, the "PACKAGE SELECTION" screen appears again.

Select the "FUNCTION SELECTION/DEFAULTS" screen with <F2> (UTILITY) and <F1> (BUS DIALLING).

Choose a name for the path you want to generate (e.g. "TN2/95PLC" for the S5-95U with station address 2 as endpoint of the path).

Choose names for the pathfile (e.g. C:TEST@@AP.INI), the footer file (if you want a footer) and the printer file (if you have defined printer parameters for the printer with the "PRINTER" utility).

Figure 9-2. The "FUNCTION SELECTION/DEFAULTS" Screen of the "BUS DIALLING" Utility

Press <F1> (EDIT) to generate the path.

9.4 Editing a Path

Supposing you want to use a programmer connected direct to the SINEC L2 LAN to reach the station with LAN address 2 . The endpoint of the path is to be the S5-95U with the station address 2. Figure 9-3 shows an example of how to edit the path (Figure 9-3) with the "LAN SELECT" utility.

Figure 9-3. Path to be Edited with the "BUS DIALLING" Utility

Note

The "ENDP" control processor and "CP L2" communications processor are integrated in the S5-95U programmable controller (section 3.1, Figure 3-2).
You must therefore show the S5-95U as consisting of "CP L2" and "ENDP" as has been done in Figure 9-3.

Press key <F1> in the "FUNCTION SELECTION/DEFAULTS" screen. The following screen appears:

Figure 9-4. Screen for Editing a Path (1)

Press <F8> (AUX. FUNCTION) if you want to enter or modify the name of a program, symbol, printer or footer file.

Press <F4> (CP-L2) to proceed to the next path level.

Note

If you want to delete the element last entered by you in the path, press <F7>. This avoids having to delete the whole path if you have entered a wrong path element.

The screen changes to the following:

Figure 9-5. Screen for Editing a Path (2)

Change the default address " 0 " in the entry field beside the symbol for CP-L2 to "2" in order to reach the S5-95U with the station address 2 .

Press <F1> (ENDP) to complete the path.
Confirm the path parameters with <F6> (SAVE).
You have now completed and stored the path. You must now activate the subpath from the PG/CPL2 to the L2 LAN to set the CP-L2's LAN parameters in the programmer.

Press <F4> (ACTIVATE) in the "FUNCTION SELECTION/DEFAULTS" screen.

The edited path appears on the monitor.

Figure 9-6. Screen for Activating a Path (1)

Activate the first path level by pressing <F3> (SUBPATH).
The activated subpath is then marked with an "* ", and "DIRECT PG LINK ESTABLISHED" appears in the message bar.

Press <F1> (SYSID) to match the local LAN parameters of the CP-L2 communications processor in the programmer to the L2 LAN parameters (basic L2 parameters) of the system (section 9.5).

You can also edit more complex paths.
For example, you can edit a path from a programmer on the SINEC H1 LAN to an S5-95U on the SINEC L2 LAN. Proceed exactly as described on the previous pages. The edited path will then appear as follows on your monitor:

Figure 9-7. Screen for Activating a Path (2)

9.5 Setting the L2 Basic Parameters on the Programmer

The following display appears when you press <F1> (SET SYSID) in the "FUNCTION SELECTION/DEFAULTS" screen:

Figure 9-8. "SYSID CP L2 (LOCAL)" Screen

The parameters shown are CP-L2 default parameters in the programmer, and must be matched to the basic L2 parameters of the system (Table 1-4, 1-5)!

Position the cursor to the parameter you want to change. You can select the baud rate and the physical bus characteristics with <F3>.

Press <F1> (SET SYSID) to confirm and save the parameters you have changed.

9.6 Activating an Edited Path

You must always match the basic L2 parameters of the CP-L2 to the basic L2 parameters of the system before activating a path starting at a programmer with an integral CP-L2 communications processor (section 9.5).

You can activate an edited path

- in the BUS DIALLING utility (FUNCTION SELECTION screen) or
- in an S5 program package with a path selection facility.

Activating a path establishes a communications link to a remote station.

Appendices

Appendix A DB1 Parameters, DB1 Parameter Assignment Errors, Calculation of Target Rotation Time
Appendix B SAP Numbers / Job Numbers
Appendix C List of Abbreviations/ Glossary
Appendix D List of Accessories and Order Numbers
Appendix E Technical Specifications; PLC Cycle Delay Times Caused by SINEC L2 Operations
Appendix F S5-95U Communications Matrix and Emulation of Types of Data Transmission in Layer 2 with S5-95U
 Fonalion\#me

A DB1 Parameters, DB1 Parameter Assignment Errors, Calculation of Target Rotation Time

Parmeter	\%月\%\&	
$\begin{gathered} \text { TLN } \\ \text { STA } \\ \text { BDR } \\ \text { HSA } \\ \text { TRT } \\ \text { SET } \\ \text { ST } \\ \text { SDT } 1 \\ \text { SDT } 2 \end{gathered}$	$\begin{gathered} \mathrm{n} \\ \text { AKT/PAS } \\ \mathrm{p} \\ \mathrm{q} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{t} \\ \mathrm{u} \\ \mathrm{v} \end{gathered}$	Own station address Own station status Baud rate Highest L2 station address on bus Target rotation time Set-up time Slot time Shortest delay time Longest delay time
Argument	Permissible Range	Explanation
AKT/PAS p q m s t u u	1 to 126 $9.6 ; 19.2 ; 93.75 ; 187.5 ;$ $500 ; 1500$ 1 to 126 256 to $1,048,320$ 0 to 494 50 to 4,095 11 to 255 35 to 1,023	Station address, including 1 to 31 for active stations AKT = active, PAS = passive Baud rate in kbaud Station addresses Bit time units* Bit time units* Bit time units* Bit time units*
STB FMAE	$\begin{gathered} 200 \mathrm{MBx} \\ \mathrm{~J} / \mathrm{Y} / \mathrm{N} \end{gathered}$	Location of status byte for FMA services Job number A-NR=200 Activate FMA service MAC_EVENT
Argument	Permissible Range	Explanation
$\begin{gathered} 200 \mathrm{MBx} \\ \mathrm{~J} / \mathrm{Y} / \mathrm{N} \end{gathered}$	1 to 253	Job number, flag byte Is FMA service activated? $j / J=j a ; y / Y=y e s ; n / N=n o$
		(1)
$\begin{gathered} \text { SF } \\ \text { EF } \\ \text { KBS } \\ \text { KBE } \end{gathered}$	DBxDWy or MBz DBxDWy or MBz MBh MBh	Location of the send mailbox Location of the receive mailbox Location of the send coordination byte Location of the receive coordination byte
Argument	Permissible Range	Explanation
MBh DBx DWy MBz	$\begin{aligned} & 1 \text { to } 63 \\ & 2 \text { to } 255 \\ & 0 \text { to } 255 \\ & 0 \text { to } 254 \end{aligned}$	Flag byte Data block Data word Flag byte

Paramelerstor z P Mrsie Function		
ZPDB	DBx	Reserved data block for cyclical I/Os
ZPMS	MBy	Status byte (STB) for ZP master
ZPM	a b DWc DWd DWe DWf	ZP master/slave connection (max. 32 connections can be programmed)
ZPLI	MBz	Status byte (STB) for ZP slave life list**
Argument	Permissible Range	Explanation
a	1 to 126	ZP slave station address
b	0 to 62	L2 SAP of ZP slave (if $\mathrm{S} 5-95 \mathrm{U}$ is ZP slave, enter 61)
DWc or X	0 to 255	ZPA lower limit; data word; X for "non defined"
DWd or X	0 to 255	ZPA upper limit; data word; X for "non defined"
DWe or X	0 to 255	ZPE lower limit; data word; X for "non defined"
DWf or X	0 to 255	ZPE upper limit; data word; X for "non defined"
DBx	2 to 255	Data block
MBy	1 to 254	Flag byte
MBz	1 to 253	Flag byte

Pammeters for q. Slave function

$\begin{aligned} & \text { ZPDB } \\ & \text { ZPSS } \\ & \text { ZPSA } \\ & \text { ZPSE } \end{aligned}$	$\begin{gathered} \text { DBx } \\ \text { MBz } \end{gathered}$ DWa DWb DWc DWd	Reserved DB for cyclical I/Os Status byte (STB) for ZP slave ZP slave output area ZP slave input area
Argument	Permissible Range	Explanation
DWa or X DWb or X DWc or X DWd or X DBx MBz	$\begin{aligned} & 0 \text { to } 255 \\ & 2 \text { to } 255 \\ & 1 \text { to } 254 \end{aligned}$	ZPA lower limit; data word; X for "non defined" ZPA upper limit; data word; X for "non defined" ZPE lower limit; data word; X for "non defined" ZPE upper limit; data word; X for "non defined" Data block Flag byte

* A bit time unit is the time it takes to transmit one bit (reciprocal of the baud rate).
** The next flag byte is reserved as the length byte.

Parameter	Argument	Sthimicance.	
Parameters tor Layer 2 Accesses			
STBS STBR	$\begin{aligned} & \text { n MBx } \\ & \text { n MBy } \end{aligned}$	SAP number and location of the 'Send' status byte SAP number and location of the 'Receive' status byte	
Argument	Permissible Range	Explanation	
$\begin{gathered} n \\ M B x \\ M B y \end{gathered}$	$\begin{aligned} & 33 \text { to } 54,64 \times * \\ & 1 \text { to } 253 \\ & 1 \text { to } 253 \end{aligned}$	SAP number Flag byte** Flag byte**	

** The next byte is reserved as the length byte.
*** SAP 64 is the default SAP

Typical DB1 with all programmable SINEC L2 functions:

Relevant Basic Parameters for the S5-95U as an Active/Passive Station

Parameter	\#\#	Sfa	BOP	Mse	H1	Steg	st	S01\%	501\%
S5-95U active	X	X	X	X	X	X	X	X	X
S5-95U passive	X	X	X				X	X	

Defining the Arguments of Basic Parameters for the S5-95U as a Function of the Baud Rate

	9.6	19%	93\% 5	$\text { 89\% } 5$	500 (0) fan H in OH O	1500
SET	0	0	0	0	0	60
ST	73	76	99	170	400	1000
SDT 1	12	12	12	12	12	150
SDT 2	40	60	80	150	360	980

Defining the Arguments of Basic Parameters for the S5-95U in Conjunction with the CP 5410 and/or CP 5430-1

```Bauchate \\ Baslc 4 Kbaud 9agameters FIblythe unis```	$96 .$	$\hat{y}_{2} 2$	$98.75$	$1875$	$\$ 00$	$1500$
SET	1	1	1	1	1	60
ST	80	80	190	380	1000	3600
SDT 1	12	12	12	12	12	150
SDT 2	40	60	80	150	360	980

Defining the Arguments of Basic Parameters for the S5-95U in Conjunction with Other SIMATIC Devices

Baudiate   Basic   in lbaud parametels  	9.6.	$\overline{10} \%$	$93 \%$	$187.5$	$500$	$1800$
SET	10	15	45	80	80	80
ST	100	170	240	400	1000	3000
SDT 1	12	15	45	80	80	150
SDT 2	60	65	200	360	360	980

## Calculating the Target Rotation Time

Assuming that you have defined the SET, ST, SDT 1 and SDT 2 arguments as listed in the table entitled "Defining the Arguments of Basic Parameters for the S5-95U as a Function of the Baud Rate" on page A-4, you can calculate the target rotation time required for the following types of transmission:

- Standard connection
- PLC to PLC connection
- Cyclical I/O

Proceed as follows to calculate the target rotation time:

Determine the maximum possible number of frames for each different type of frame (for example, SDN or SDA frames)

Out of these data and using the following table and the explanations to the token frame, calculate the basic load. The values given in the table are specified in bit time units.

Add 11 bit time units to the basic load for every byte transmitted. The result is your worst-case target rotation time.

typerotrame		Baudgatelngeaude\#\#\%\%乡\#\#*				
	96\%	1922	93, 75	18\%	\$00	1500
Token ${ }^{1}$	70	70	70	75	145	345
SDN ${ }^{2}$	170	190	210	230	480	1120
SDA ${ }^{3}$	180	185	190	230	425	1040
SRD ${ }^{4}$	270	270	270	280	500	1160

[^2]An example of calculating the target rotation time can be found on the next pag

## Example of Calculating the Target Rotation Time

Four active and two passive stations are connected to the SINEC L2 network.
TLN of the active stations: $1,2,3$, and 4
TLN of the passive stations: 40,41
HSA: 4
BDR: 500 kBaud
SET: 0
ST: $\quad 400$ bit time units
SDT1: $\quad 12$ bit time units
SDT2: 360 bit time units
Data traffic for


- Station 2: PLC to PLC conn. SDA frame with 30 bytes of transmit data to station 1
- Station 3: PLC to PLC conn. SDA frame with 30 bytes of transmit data to station 1
- Station 4: PLC to PLC conn. SDA frame with 30 bytes of transmit data to station 1

Calculation of the basic frame load and the required time:


Target rotation time to set: 6400 bit time units $\cdot \frac{1}{500 \mathrm{kBaud}}=12800 \mu \mathrm{~s}$

Tip to optimize the target rotation time:

- Assign the station addresses in ascending order (1, 2, ...).


## Explanation of the SET, ST, SDT1, and SDT2 Parameters

Paraneleg	Explamation
Set up time (SET)	"Dead time"; this is the time allowed to pass between the occurrence of an event (e.g., the receipt of a character or expiration of an internal timer) and the response to this event.   Permissible range: 0 to 494 bit time units*
Slot time (ST)	Wait-to-receive time or wait-to-reply time; this is the length of time the transmitter of a frame must wait for the receiving station to respond. This is valid for a data frame as well as for a token frame.   Permissible range: 50 to 4095 bit time units*
Shortest station delay time (SDT1)	Shortest protocol processing time; this is the shortest span of time between transmission(receipt) of the last bit of a frame and transmission (receipt) of the first bit of the next frame. Permissible range: 11 to 255 bit time units*
Longest station delay time (SDT2)	Longest protocol processing time; this is the longest span of time between transmission(receipt) of the last bit of a frame and transmission (receipt) of the first bit of the next frame. Permissible range: 35 to 1023 bit time units*

* One bit time unit is the time it takes to transmit one bit (reciprocal value of baud rate)


## DB1 Parameter Assignment Errors

You can read out the DB1 parameter assignment errors as codes. All you need to do is to specify in DB1, parameter block "ERT:", where to store the error code (in the flag area or in a data block). The error code is in the left byte; "04 ${ }_{\mathrm{H}}$ " is in the right byte as the error location for SL2: SINEC L2 parameter block. Parameter assignment for "ERT:" is described in detail in section 9.1.2 of the S5-90U/S5-95U System Manual.

Erion code or obs    whim tha worm	Signticance
3 H	Syntax error in block ID
4 H	Syntax error in parameter
5 H	Syntax error in argument, or value goes upside permissible
6 H	Value exceeds permissible range in an argument
$7_{\mathrm{H}}$	Parameter combination not allowed
$17_{\mathrm{H}}$	L2 interface not in working order
$20^{H}$	A flag byte has been assigned twice for the status bytes


Emon Codemoms inferprete teth bytem data word or flag word	Stintrcancer
$21^{\text {H }}$	L2 basic parameter: TLN (station address) of an active station can be only 1 to 31
$2^{22} \mathrm{H}$	L2 basic parameter: TLN (station address) is higher than HSA (highest station address)
$23^{\text {H }}$	The connection has been configured to own station
$24^{4}$	PLC to PLC connection to a passive station is not possible; or, with standard connection, there is no send mailbox for a passive station.
$25^{H}$	FMA service MAC_EVENT has been activated (DB1 parameter FMAE y), but "STB 200" was not entered
$26^{6}$	L2 basic parameter: SET must be longer than SDT1 (SET > $\frac{\text { SDT } 1-35}{2}$ )
$27_{\mathrm{H}}$	No receive mailbox was specified for the standard connection
$28_{\mathrm{H}}$	No send mailbox was specified for the standard connection
$29^{H}$	L2 basic parameter missing; all basic parameter must be present in DB1 parameter block "SL2:".
$30_{\mathrm{H}}$	There are several "SL2:" parameter blocks
$31_{\mathrm{H}}$	L2 basic parameter: SDT2 must be ( $35+2$ times SET)
$32^{H}$	L2 basic parameter: (ST-15) must be SDT2
$40_{\mathrm{H}}$	ZP master: no data block was specified in DB1 for ZP (ZP DB)
$41_{4}$	ZP master: ZP master was entered for a passive station
$4^{42} \mathrm{H}$	ZP master: ZP master has no ZP connection
$43^{H}$	ZP master: at least in one ZP connection the ZP slave address is wrong (ZP slave address=ZP master address)
$44_{H}$	ZP master: the ZP connection was assigned twice
$45^{\text {H }}$	ZP master: The ZPA (ZP output area) was not entered consistently (without gaps) in ZPDB
46 H	ZP master: length error in ZPA (ZP output area)
$47_{\mathrm{H}}$	ZP master: The ZPE (ZP input area) was not entered consistently (without gaps) in ZPDB or overlaps.
48 H	ZP master: length error in ZPE (ZP input area)
$49^{H}$	ZP master: ZPA and ZPE overlap in ZP DB
52H	ZP slave: no data block was specified in DB1 for ZP (ZP DB)
$53_{\mathrm{H}}$	ZP slave: neither ZPA nor ZPE were specified in DB1
$54_{\mathrm{H}}$	ZP slave: ZPA and ZPE overlap in ZP DB

## B SAP Numbers / Job Numbers

This appendix contains information that you do not have to know to work with the S5-95U programmable controllers as SINEC L2 stations. This appendix is for the network expert who wants more details about the internal process of data transfer.

Definition of terms:
The job number carried by a frame running on the network helps the required station to identify and read in the frame. To achieve this, another parameter is provided, the SAP (Service Access Point).

A mail carrier transporting a package to the receiver is in a situation similar to the message on the bus:

- The residence number (destination address) has to be identified.
- The correct residence door (=SAP) must be found in order to deliver the package (message).

The system automatically assigns the SAP numbers for the functions listed below.

SAP	Fimctiontexplanation
0, 1	reserved
2 to 32	PLC to PLC connection via integrated standard function blocks L2-SEND and L2-RECEIVE.*
33 to 54	Layer 2 accesses
55	reserved
56	Standard connection
57 to 60	reserved
61	Cyclical I/O
62, 63	reserved
64 (default SAP)	Layer 2 accesses

* The following applies to PLC-to-PLC connections:

SAP 2 means a PLC-to-PLC connection to station 1
SAP 32 means a PLC-to-PLC connection to station 31
$\qquad$

The job number indicates the following:

- Which of the communications services is used (see table below)
- With PLC to PLC connections:
- in L2-SEND, which station will receive the data
- in L2-RECEIVE, which station transmitted the received data.
- With layer 2 accesses
- in L2-SEND, which layer 2 access is used for the data to be sent
- in L2-RECEIVE, which layer 2 access is used for the received data

dob Mimber	Used rom
0	nothing
1 to 31	transmission (transmitting and receiving) via PLC to PLC connection
32	nothing
33 to 54, 64	sending the request and fetching the confirmation in the case of layer 2 accesses
55 to 63, 65 to 132	nothing
133 to 154, 164	fetching the indication in the case of layer 2 accesses
155 to 163, 165 to 199	nothing
200	service and diagnostics functions with FMA services
201	nothing
202	fetching the ZP slave life list for the ZP master with cyclic I/O
203 to 255	nothing

## C List of Abbreviations/Glossary

LAN-Specific Mnemonic	Explanation
A-NR	Parameter for FB L2-SEND and FB L2-RECEIVE: job number
AS	Active star coupler
BDR	DB1 parameter: SINEC L2, Baud rate (specifies the speed of the data transfer)
BF LED	Bus fault LED
CBR	DB1 parameter: SINEC L2, standard connection, location of the receive coordination byte
CBS	DB1 parameter: SINEC L2, standard connection, location of the send coord. byte
CP	Communications processor
DBNR	Parameter for FB L2-SEND and FB L2-RECEIVE: data block number (location of the source and destination data)
FMA	Field bus management
FMAE	DB1 parameter: SINEC L2, activate FMA service MAC_EVENT
FO	Fiber optics
FOL	Fiber optic link
GAP	For an active station: the address range from the own station address to the next active station address.
GP	Global I/O
HSA	DB1 parameter: SINEC L2, highest station address
LAS	List of active stations
LB	Length byte
OPM	Optical plastic module
OSM	Optical silica module
PAFE	Parameter assignment error byte
PROFIBUS	Process field bus
QANF	Parameter for FB L2-SEND: start address of source data area
QLAE	Parameter for FB L2-SEND: amount of source data
QTYP	Parameter for function block L2-SEND: type of source data
RM	DB1 parameter: SINEC L2, standard connection, receive mailbox location
SAP	Service access point
SC	Standard connection


LAN-Specific Mnemonic	Explanation
SDA	Send data with acknowledge
SDN	Send data with no acknowledge
SDT 1	DB1 parameter: SINEC L2, shortest station delay time
SDT 2	DB1 parameter: SINEC L2, longest station delay time
SET	DB1 parameter: SINEC L2, set-up time
SM	DB1 parameter: SINEC L2, standard connection, send mailbox location
SL2:	DB1 block ID for SINEC L2
SRD	Send and request data
ST	DB1 parameter: SINEC L2, slot time
STA	DB1 parameter: SINEC L2, station status
STB	Status byte
STBR	DB1 parameter: SINEC L2, PLC to PLC connection, location of the receive status byte
STBS	DB1 parameter: SINEC L2, PLC-PLC connection, location of the transmit status byte
TLN	DB1 parameter: SINEC L2, station address
TN	Station
TRT	DB1 parameter: SINEC L2, target rotation time
ZANF	Parameter for FB L2-RECEIVE: start address of the destination data area
ZLAE	Parameter for FB L2-RECEIVE: amount of source data
ZP	Cyclic I/O
ZP DB	DB1 parameter: SINEC L2, Cyclic I/O, data block for Cyclical I/Os
ZPA	Cyclic I/O output range (location of the send data)
ZPE	Cyclic I/O input range (location of the received data )
ZPLI	DB1 parameter: SINEC L2, cyclic I/O, status byte for the ZP slave life list
ZPM	DB1 parameter: SINEC L2, cyclic I/O, ZP master/slave relationship
ZPMS	DB1 parameter: SINEC L2, cyclic I/O, status byte for the ZP master
ZPSA	DB1 parameter: SINEC L2, cyclic I/O, ZP slave output range
ZPSE	DB1 parameter: SINEC L2, cyclic I/O, ZP slave input range
ZPSS	DB1 parameter: SINEC L2, cyclic I/O, ZP slave status byte
ZTYP	Parameter for FB L2-RECEIVE: type of destination data

## Glossary

## A

Active star coupler
Active station

## B

Baud rate	Data transmission speed expressed as the number of bits transmitted per second (baud rate $=$ bit rate)
Bit time unit	The time taken to transmit a bit (the reciprocal of the baud rate)
Bit-serial field bus system	Bus system used at the field level in integrated automation systems; information is transmitted in bit-serial mode over the bus cable
Broadcast	Data and information sent from an active station to all active and passive stations on the LAN
Bus	Common transmission path to which all stations are connected
Bus cable	Twisted-pair, shielded cable for connecting stations with each other
Bus connector	Resource for the direct interconnection of stations on the LAN
Bus terminal	Resource used for connecting a station to the bus cable
C	
Cell level	A hierarchical level in an integrated automation system: Receives production orders from the process supervision level; this level is generally represented by manufacturing cells, each of which is controlled by at least one PLC
Communications processor	That part of a PLC controlling message traffic over the SINEC L2 LAN parallel to the control processor
Confirmation	Acknowledgement of a service request
Coordination byte	Diagnostic byte for flagging error and coordination information when sending and/or receiving data over a standard connection
Cyclic I/O (ZP)	Cyclic data interchange between ZP master (generally active station) and ZP slaves (generally passive stations)
D	
Data transmission	Activity on the transmission link (bus or LAN cable)
E	
Explicit communications	The time at which communications take place is determined by the setting of an initiation bit in the user program


Baud rate	Data transmission speed expressed as the number of bits transmitted per second (baud rate = bit rate)
Bit time unit	The time taken to transmit a bit (the reciprocal of the baud rate)
Bit-serial field bus system	Bus system used at the field level in integrated automation systems; information is transmitted in bit-serial mode over the bus cable
Broadcast	Data and information sent from an active station to all active and passive stations on the LAN
Bus	Common transmission path to which all stations are connected
Bus cable	Twisted-pair, shielded cable for connecting stations with each other
Bus connector	Resource for the direct interconnection of stations on the LAN
Bus terminal	Resource used for connecting a station to the bus cable
C	
Cell level	A hierarchical level in an integrated automation system: Receives production orders from the process supervision level; this level is generally represented by manufacturing cells, each of which is controlled by at least one PLC
Communications processor	That part of a PLC controlling message traffic over the SINEC L2 LAN parallel to the control processor
Confirmation	Acknowledgement of a service request
Coordination byte	Diagnostic byte for flagging error and coordination information when sending and/or receiving data over a standard connection
Cyclic I/O (ZP)	Cyclic data interchange between ZP master (generally active station) and ZP slaves (generally passive stations)
D	
Data transmission	Activity on the transmission link (bus or LAN cable)
E	
Explicit communications	The time at which communications take place is determined by the setting of an initiation bit in the user program

Resource for coupling fiber optic cables
When ready to send data, an active station may send data to, and request data from, other stations on the LAN

## F

Field device	A device, such as a sensor or actuator, permitting the exchange of information between the control system and the process
Field level	A hierarchical level in an integrated automation system; the interchange of information between the control system and the process is implemented by means of field devices, sensors and actuators
FMA services	Debugging and diagnostic services for monitoring the network and the local stations; implement network management functions to the PROFIBUS standard
FO transmission technology	Configuration of the SINEC L2 LAN using optical fiber conductors or waveguides (necessary in noisy environments)
G	
GAP	Address area of the active station extending from its own address to that of the next active station
I	
Implicit communications	Data communications over the LAN take place automatically and are not initiated by the user program
Indication	Indication of an event
L	
LAN access method	Controls access to the transmission medium by the stations to guarantee the functional interchange of data   master-slave method token passing method
Layer 2	Layer 2 of the ISO (International Organization for Standardization) 7-layer reference model for communications; in PROFIBUS terms, layer 2 is referred to as the Fieldbus Data Link (FDL)
Layer 2 services	Communications mechanisms provided to the user by the layer 2 firmware of the communications processor
Local station	Initiator of a communications link, either as a sending or requesting station
Longest station delay time	The longest time elapsing between sending or receiving the last bit of a frame and the sending or receiving of the first bit of the next frame
M	
Master-slave method	LAN access method when there is only one station active and all other stations are passive; only the active station automatically has the right to send, while all passive stations can send data to an active station only when requested to do so by that station
Multicasting	Transmitting from an active station to a group of active and passive stations

## 0

Optical fiber link	Transmission medium employing fiber optic waveguides
P	
Parameter assignment error byte	Diagnostic byte for flagging possible errors when assigning parameters to the integral L2-SEND and L2-RECEIVE FBs
Passive station	A passive station may only exchange data with an active station when requested to do so by that station
Planning level	The hierarchical level in an integrated automation system at which production orders are planned, product strategy is established, production guidelines are defined and information from the production process is monitored
Process supervision level	The hierarchical level in an integrated automation system at which decisions are made concerning production procedures and the coordination of function groups
PROFIBUS	Process and field bus as defined in the PROFIBUS standard (DIN 19245). The standard specifies the functional, electrical and mechanical properties of this bit-serial field bus system
R	
Receive mailbox	Area in the data block (DB) or flag byte containing the data received from a data transmission
Receiver	remote station
Remote station	A responding station in a communications link as opposed to the initiating local station
Repeater	A resource for amplifying LAN bus signals and coupling LAN segments over great distances
Repeater adapter	A resource for a mixed configuration of RS 485 and FO transmission technologies
Request	A service request of the local station
RS 485 transmission technology	SINEC L2 LAN configuration involving shielded twisted- pair wires
S	
SAP	Service access point to layer 2
SDA	Send Data with Acknowledge: Data transmission service provided by layer 2 for acyclic send and request mode
SDN	Send Data with No Acknowledge: Data transmission service provided by layer 2 for acyclic send and request mode
Segment	The smallest functional unit of a LAN
Send mailbox	Area in a data block (DB) or flag byte containing the data to be transmitted
Sender	local station


Setup time	The time allowed to elapse between an event (e.g. receipt of a character or expiry of an internal monitoring time) and the response to that event ("dead time")
Shortest station delay	The shortest time elapsing between sending or receiving the last bit of a frame and sending or receiving the first bit of the next frame
SINEC L2	SINEC L2 local area network
SINEC L2 local area network	A bus-type LAN configuration consisting of one or more segments coupled together by repeaters; used for networking PROFIBUScompatible PLCs and field devices at the cell and field levels
Slot time	Wait-to-receive time (or wait-to-reply time); the length of time the sender (initiator) of a frame must wait for the receiving station to respond. It is immaterial whether this is a message or data frame or a token frame.
SRD	Send and Request Data: Data transmission service provided by layer 2 for acyclic send and request mode
Star coupler	active star coupler
Station	Device/PLC capable of transmitting and receiving data via the LAN bus
Station address	Each station has an address (assigned to it as a parameter) to enable send and receive jobs to be uniquely assigned to it
Status byte	Diagnostic byte for flagging the status of a job and any errors in data transmission
Subminiature D connector	9-pin plug or male connector to DIN 41652
Subminiature D socket	9-pin socket or female connector to DIN 41652
T	
Target rotation time	The maximum permissible token rotation time
Terminating resistor	Resistance or resistance network used to match the line impedance of LAN cables; terminating resistors are always required at the end of the cable or segment
Terminator	terminating resistors
Token	A defined bit string ("assigned"/"unassigned") authorizing a station to send data over the LAN
Token hold time	The difference between the target rotation time and the token rotation time; the active station only has this time at its disposal for sending data over the LAN
Token passing method	Bus access method when all stations are active; the token (permission to send) is passed from one station to another while all stations are logically interconnnected


Token rotation cycle	The time that elapses between transmitting and receiving a token   frame by an active station.
Token rotation time	The period, in the view of the active station, during which the   station was not in the possession of the token
Transmission technology	RS485 transmission technology   FO transmission technology
Types of data transmission	Transmission mechanisms enabling data transmission to be   optimally adapted to the particular situation
Z	Area in a data block (DB) containing the data received in the case   of cyclic I/O
ZP input area	ZP station capable of interrogating other ZP stations
ZP master	Area in a data block (DB) containing the data to be sent in the case   of cyclic I/O   ZP station that can be interrogated by a ZP master
ZP slave	Diagnostic area in a data block (DB) or flag byte of the ZP master   for flagging current ZP slave errors or faults
ZP slave life list	

```
#\cong%%%Wst om Accessories and Ordem Numbers
```


## D List of Accessories and Order Numbers

S5-95U programmable controller with SINEC L2 interface

S5-90U/S5-95U system manual
with User's Guide S5-90U and S5-95U

German
English French Spanish Italian

SINEC L2 interface for the S5-95U programmable controller manual

German	6ES5 998-8MB12
English	6ES5 998-8MB22
French	6ES5 998-8MB32
Spanish	6ES5 998-8MB42
Italian	6ES5 998-8MB52

Bus-Specific accessories for RS 485 transmission technology
SINEC L2 bus connector IP 20
SINEC L2 bus connector IP 20 with PG socket
SINEC L2 bus terminal RS $485 \quad 1.5 \mathrm{~m}$, approx. 5 ft
$3,0 \mathrm{~m}$, $\quad 10 \mathrm{ft}$
SINEC L2 bus terminal RS 485 with attached PG interface 1.5 m , 5 ft SINEC L2 repeater for nominal operating voltage 24 V , IP 20 SINEC L2 repeater for nominal operating voltage 24 V , IP 65 SINEC L2 bus cable (indoors) SINEC L2 bus cable (buried)

## Bus-Specific accessories for Fiber Optic transmission technology

SINEC L2FO PF bus terminal for plastic FO cable SINEC L2FO SF bus terminal for glass FO cable
Active star coupler AS 501 A
Active Star coupler AS 501 B
SINEC L2FO one-port module OPM SINEC L2FO one-port module OSM SINEC L2FO SF repeater adapter für glass FO cable SINEC L2FO connecting cable plastic with HP connector

6ES5 762-1AA11

## Order Number

6ES5 095-8MB02

6ES5 998-8MA12
6ES5 998-8MA22
6ES5 998-8MA32
6ES5 998-8MA42
6ES5 998-8MA52

6ES5 998-8MB12
6ES5 998-8MB22
6ES5 998-8MB32
6ES5 998-8MB52

6ES5 762-1AA21
6GK1 500-0AA00
6GK1 500-0AA00

6GK1 500-0DA00
6GK1 510-0AC00

6GK1 510-0AD00
6XV1 830-0AH10
6XV1 830-3AH10

6GK1 500-1AA00
6GK1 500-1AB00
6GK1 501-0AA00
6GK1 501-0AB00
6GK1 501-1AA00
6GK1 501-1AB00
6GK1 510-1AA00

6XV1 830-4AH50
6XV1 830-4AN10
6XV1 830-4AN15
6XV1 830-4AN20
6XV1 830-4AN25

5 m , approx. 16 ft
$10 \mathrm{~m}, \quad 33 \mathrm{ft}$
$15 \mathrm{~m}, \quad 49 \mathrm{ft}$
$20 \mathrm{~m}, \quad 66 \mathrm{ft}$
$25 \mathrm{~m}, \quad \quad 82 \mathrm{ft}$

## E Technical Specifications; Cycle Delay Times of the PLC Caused by SINEC L2 Operations



SINEC L2 Communications Services (Continued)	Integral Blocks
	Integral Organization Blocks   Integral Function Blocks   - FB240 code converter: BCD4 to 16-bit fixed point   - FB241   code converter: 16-bit fixed point to BCD4   - FB242   multiplier: 16-bit fixed point   - FB243   divider: 16-bit fixed point   - FB250   reading in analog values   - FB251   outputting analog values   - FB252   L2-SEND   - FB253   L2-RECEIVE

## Distance Table for RS 485 Technology：

Baud hate in hbilsms	Mumberon Segments Commedicomb Series							
	\＆\＆\＆\＆	श\％\％ks	§\％月的					
＆\＆\＆	§\＆\＆\＆	¢\＆\＆	\％	8\％䶹n				
$96 \% 192.93 \% \%$	1.2 km	2.4 km	3.6 km	4.8 km	6.0 km	7.2 km	8.4 km	9.6 km
1875	1.0 km	2.0 km	3.0 km	4.0 km	5.0 km	6.0 km	7.0 km	8.0 km
500	0.4 km	0.8 km	1.2 km	1.6 km	2.0 km	2.4 km	2.8 km	3.2 km
	0.2 km	0.4 km	0.6 km	0.8 km	1.0 km	－	－	－

## Caution

In extensive networks，the potential difference between two stations may exceed $\pm 7 \mathrm{~V}$ ． Should this be the case，make sure that the necessary equipotential bonding measures are taken，otherwise the SINEC L2 interface will be destroyed．

## Distance Table for Glass Fiber Optic Cable Technology：

Baud nate in	Mumbera Segnents Connecteom Series								
housts	\＜k\＆		3\％月		\％		Ki\#k	（\％ans	$16$
	1.4 km	2.8 km	4.2 km	5.6 km	7.0 km	8.4 km	9.8 km	$\ldots$	23.8 km
	1.4 km	2.8 km	4.2 km	5.6 km	7.0 km	8.4 km	－		－
	1.4 km	2.8 km	4.2 km	－	－	－	－		－

## Interrupt Response Time and PLC Cycle Delay Time

Increasing the interrupt response time
Since process interrupts cannot interrupt on－going SINEC L2 processing，the increase in the interrupt response time－worst case－corresponds to the cycle delay time caused by the current SINEC L2 function．In the case of programmer functions，the worst－case increase in the interrupt response time is $850 \mu \mathrm{~s}$ ．（For calculation of the interrupt response times without SINEC L2 see S5－ 90U／S5－95U System Manual，section 10．3）．

The table overleaf lists the worst－case times for PLC cycle delay times in connection with data transmission over the SINEC L2 LAN．

Type ot Data trans. mission	Prerequstes\%	Amount or Data	When Pice Scal Cyctelioaded	Pice cycte betay time as Sender or Recemer
Standard connection	Sending and/or receiving is enabled	$\begin{gathered} 1 \text { to } \\ 242 \text { bytes } \end{gathered}$	When sending: The PLC scan cycle is loaded when the send job is registered by the operating system (this takes place within 10 ms )   When receiving: The PLC scan cycle is loaded when receive data has arrived at receive mailbox.	Worst case for 1 byte: $550 \mu \mathrm{~s}$   Worst case for 242 bytes: $650 \mu \mathrm{~s}$
PLC-to-PLC connection/ layer 2 services	When sending: Send job is possible	$\begin{gathered} 1 \text { to } 242 \\ \text { bytes } \\ \text { (PLC/PLC)/ } \\ 0 \text { to } 242 \\ \text { bytes } \\ \text { (layer 2) } \end{gathered}$	Every time an L2FB is invoked (FB252, FB253)	When assigning parameters direct to the L2-FBs: worst case for 1 byte: $500 \mu \mathrm{~s}$ worst case for 242 bytes: 600 нs
	When receiving: Receive data are available			When assigning parameters indirectly to the L2-FBs: worst case for 1 byte: $550 \mu \mathrm{~s}$ worst case for 242 bytes: 650 ss
Cyclic I/O	Cyclic I/O is defined	ZP master: 1 to 128 words ZPA and/or 1 to 128 words ZPE   ZP slave:   1 to 121   words ZPA   and/or 1 to   121 words   ZPE	When transferring the ZP data at the ZP cycle checkpoint (prior to the OB1 cycle)	Worst case for 1 word ZPA and 1 word ZPE: $400 \mu \mathrm{~s}$   Worst case for 128 words ZPA and 128 words ZPE: $600 \mu \mathrm{~s}$

Programmer functions:
Programmer functions vary considerably regarding their influence on the cycle delay time and therefore no generally valid times can be specified.
 on Layer 2 with the S5954

## F S5-95U Communications Matrix and Emulation of Types of Data Transmission on Layer 2 with the S5-95U

The following overview lists the Siemens devices with which the S5-95U can communicate, as well as the respective data transmission connections and services.
The matrix represents only the present state of the art (08/93).

Device   OMOM Mo.						
		Standard com,	Pus PUE conn	$\underset{4}{29}$   Master	部?   Stave	Iayek 2 Services
S5-95U	6ES5 095-8MB21	X	X	X	x	
S5-95U	6ES5 095-8MB22	X	X	X	X	X
CP5430-0	6GK1 543-0AA00		X		X	X
CP5430-1	6GK1 543-0AA01		x		x	X
PC conn. FDL	5412/MS-DOS					X
TD10/220-5*	6AV3 010-1DK00					X
TD10/240-8*	6AV3 010-1EL00					X
TD20/240-8*	6AV3 020-1EL00					X
OP20/220-5*	6AV3 520-1DK00					X
OP20/240-8*	6AV3 520-1EL00					X
OP30/A*	6AV3 530-1RR00   6AV3 530-1RR20   6AV3 530-1RR01   6AV3 530-1RR21					X
OP30/B*	6AV3 530-1RR10   6AV3 530-1RR30   6AV3 530-1RR11   6AV3 530-1RR31					x
OP30/C*	6AV3 530-1RS31					X

[^3]$\qquad$

## Emulation of Types of Data Transmission for the S5-95U on Layer 2

yypor Oat Inhsmission				\%2Sounco   Adidesses
Stanotid Connection	Send frame:   - SDA low   - SDN low for broadcasting   Receive frame, active stations:   - SDA low,   - SDA high,   - SDN low and SDN high permitted   Receive frame, passive stations:   - Only SDN Iow permitted	Send frame:   - 1 to 242 bytes   Receive frame:   - 1 to 242 bytes permitted	When sending:   - Local SAP = 56   - Remote SAP = 56   When receiving:   - Local SAP = 56   - Remote SAPs, only 56 permitted	When receiving:   - All source addresses permitted
PU\&\& $\%$ Conneclion	Send frame:   - SDA low   Receive frame:   - Only SDA low permitted	Send frame:   - 1 to 242 bytes   Receive frame:   - 1 to 242 bytes permitted	When sending:   - Local SAP = destination address $+1$   - Remote SAP = local address + 1   When receiving:   - Local SAP = source address $+1$   - All remote SAPs permitted	When receiving:   - Only source address = local SAP - 1 permitted

$\qquad$

## Emulation of Types of Data Transmission for the S5-95U on Layer 2 (Continued)

Tinsinissinn		 	 	  A0d
	Send frame of ZP master:   - SRD low   Response frame from ZP slave:   - RESPONSE Iow and RESPONSE high permitted	Send frame of ZP master:   - 0 to 242 bytes   Response frame of ZP slave:   - 0 to 244 bytes permitted	When sending:   - Local SAP of ZP master $=61$   - Remote SAPs of ZP slaves = 0 to 62 (configurable in DB1)	-
z. 51 ave	Response frame of ZP slave:   - RESPONSE low   Receive frame from ZP master:   - SRD low only permitted	Response frame of ZP slave:   - 0 to 242 bytes   Receive frame from   ZP master:   - 0 to 242 bytes permitted	When receiving:   - Local SAP of ZP slave = 61   - Remote SAPs of ZP master = 0 to 62 permitted	When receiving:   - All source addresses permitted
84 d	Send frame:   - SDA low/high   - SDN low/high   - SRD low/high   Receive frame:   - SDA low/high   - SDN low/high   - SRD low/high	Send frame:   - 0 to 242 bytes   Receive frame:   - 0 to 242 bytes permitted	When sending:   - Local SAP = 33 to 54, 64 (default SAP permitted)   - All remote SAPs permitted   When receiving:   - Local SAP = 33 to 54, 64 (default SAP permitted)   - All remote SAPs permitted	When receiving:   - All source addresses permitted

Special Feature: If an S5-95U is in the STOP mode, receiving of a frame via the standard connection (not broadcasting) and the PLC-to-PLC connection (local SAP=56 and 2 to 32) is acknowledged on layer 2 with "UE" (FDL/FMA 1/2-User Error) if the connection was properly configured in the local S5-95U.
linex

## Index

## A

AS 501 active star coupler


## B

BF LED
Bit time unit
Broadcasting
Bus cable

- routing the

Bus connector

- mounting
- SINEC L2

Bus parameter block
Bus segment

- connecting, to the L2 repeater

Bus terminal

- RS 485

$3-7$	
$1-9$	$1-10$
$1-7$	$1-16$
$4-5$,	$4-1$
$1-14$	
$1-3$	$1-24$,
$2-8$	$2-2$
$1-3$	$1-23$,
$2-2$	$2-3$
$2-2$	
$3-22$	
$1-3$,	$1-2 \mid$
$2-6$	$2-2$
$1-23$	
$1-3$	

## C

$\begin{array}{ll}\text { CBR } & \text { Coordination byte } \\ \text { CBS } & \text { Coordination byte }\end{array}$
Communication

- explicit
- implicit

Communications processor

- tasks
com_class
Configuring
- a system

Confirmation
Coordination byte

- 'Receive’ (CBR)
- 'Send' (CBS)

CP 5410 communications processor
CP 5412 communications processor
CP 5430 communications processor
Cyclic I/O

- characteristics
- cycle control point
- data exchange
- DB
- input area
- master
- output area
- safety function
- slave

Cycle delay time

Cyclic I/O (continued)		
- slave life list		
- start-up sequence	$7-8$	$7-9,7-14$

## D

Data exchange
Data transmission type

- emulation on layer 2
- PLC to PLC connection 6-1
- standard connection
- cyclic I/O

7-1.7-2
F-3

DB1

- example A-3
- input
- parameter assignment error
- parameters

1-11
A-7

| A- -13. | $4-3$. | $6-5$, |
| :--- | :--- | :--- | :--- |

7-6 8-10

- preset in the programmable controller
DB1 basic parameters
- rules for setting

4-3

Default

- DB1
- parameters

Default SAP
Diagnostics $3-10$

Diagnostics functions	$3-8,3-10$
Direct parameter assignment	$5-4$
Double token	$3-27$

## E

Equipotential bonding	$2-5$
Event parameter block	$3-27$
Explicit communication	$1-13$

## F

FB222	$3-14$
FB223	$8-11$
FB224	$8-11$

FB252 see: Standard function blocks
FB253 see: Standard function blocks
FDL_STATUS
3-14 3-19

$\begin{array}{l}\text { Female } \text { D connector } \\ - \text { pin assignment }\end{array}$	$3-3$
Field bus management	$3-10$
Field device	$1-4$


Flag byte 255 see: Parameter assignment error byte	
FMA header see: Header	
FMA service	3-10
- DB1 parameters	3-13
- characteristics	3-12
- prerequisites to using	3-12
Frame	
- type of	A-5
G	
Gap update factor	3-2
Grounding methods	2-4


H	
Header	3-11 8-3
Hierarchy levels   - in an automation network	1-1
I	
Implicit communication	1-13
Indication	3-14 3-26. 8-3,
	8-4
- header	3-26
Indirect parameter assignment	5-4
Installation   - components	2-1
Installing   - a system	3-5
Interrupt response time	E-3
J	
Job number	5-2, 6-1, 6-4

## L

L2 FBs see: Standard function blocks
L2 interface

- connecting, to the network
- connector assignment

LAS_LIST_CREATE
Layer 1
Layer 2
Layer 2 services

- DB1 parameters
- characteristics

Length byte
Lightning protection
link_status

## M

MAC EVENT

- activate

Male D connector
Master-slave principle
Multicasting

$3-14$.	$3-26$
$3-13$	
$2-3$	
$1-5$	
$1-17$.	
$1-16$	$8-19$

## N <br> Net data

## 0

Operating principle

- of the programmable controller 3-3


## P

PAFE see: Parameter assignment error byte

PG 685	$9-1$
PG 730	$9-1$
PG 750	$9-1$
PG 770	$9-1$
PG slave	$9-2$
Parameters	$5-3$
Parameter assignment   $\quad$ - direct   $\quad$ - indirect	
Parameter assignment error   $\quad$ - in DB1   $\quad$ - in L2-SEND   - in L2-RECEIVE	$5-4$

Parameter assignment error byte (PAFE)

- structure of 5-5
Partial configuration - typical

PLC to PLC connection

- characteristics
- DB1 parameters

PLC cycle control point
PLC cycle delay time
Potential differences
Priorities of message frames

$$
\frac{1-6}{1-3}
$$

PROFIBUS

## R

READ_VALUE
Receive mailbox (RM)
rem_add_segment
rem_add_station

$3-21$
$4-2,4-3,4-7,4-14$
$8-8$
$3-11$

Repeater
Repeater adapter
Request
RESPONSE
Response time ZP slave repsonse
time
RM Receive mailbox
RS 485 SINEC L2 repeater
see: Repeater
RUP_MULTIPLE
RUP_SINGLE
8-23

## S

Safety functions
SAP

SAP number
SC see: Standard connection
SDA
SDN

$7-3$    $8-23$    F-2  $\mathrm{B}-1$    $7-3$ $8-6$


$8-15$	A-5	$\mathrm{F}-2$
$8-19$	$\mathrm{~A}-5$	$\mathrm{~F}-2$

SDT1 see: Station delay time
SDT2 see: Station delay time
Segment
Send mailbox (SF)
Service access point
see: SAP
Service request
service_code
SET see: Set-up time
Set-up time
2-7
4-2, 4-3. 4-5. 4-14

SF see: Send mailbox
SINEC L2 bus connector
see: Bus connector
SINEC L2 bus segment
see: Bus segment
SINEC L2 installation

- components

SINEC L2 network
SINEC L2FO bus terminal SF-B/PF-B
SINEC L2FO network

## 2-1

SINEC L2 repeater RS 485
Repeater
SINEC L2FO SF repeater adapter for 1-29
L2 repeater
Slot time

SRD	8-29. A-5. F-3
- without send data	8-30
ST see: Slot time	
Standard connection	4-1
- characteristics	1-14
- DB1 parameters	4-3
Standard function blocks	5-6 6-1
- assigning parameters to	5-4
- L2-SEND (FB252)	5-1
- L2-RECEIVE (FB253)	5-1
- parameters	5-3
Star coupler AS 501	
- active	1-25, 1-24
Star network	1-20
Start-up	
- sequence	3-4
- steps for	3-8
- testing during	3-26
- test possibilities	3-8
Station	
- active	$1-4$ $1-9$
- address	1-4.4-1
- passive	1-4, 1-9
Station delay time	
- shortest	A-7
- longest	A-7
Status byte (STB)	5-6, 7-4 7-7
- error	3-14
- error codes	5-7
- for the ZP slave	7-10
- for the ZP master	7-8
- 'Receive'	6-2, 6-4 8-9
- 'Transmit'	6-2 6-4, 8-9
Status byte error	3-16
Status indication - of the ZP slave	7-9
STB see: Status byte	
Subminiature D connector	2-3
Supply voltage	2-5
- connecting the	
T	
Target rotation time	1-6 3-22
- calculating the	A-5
Terminal cable	1-3
Terminator	2-6 2-8
Testing	
- during start-up	3-11
TIME_TTH_READ	3-24

TLN see: Station address

SM Send mailbox

## Token

- cycle
- frame
- hold time
- passing

Transmission technology

- RS 485
- FO

TRT see: Target rotation time U
user_id

## 1-4 1-5 <br> 1-4. 1-5. A-5, <br> 1-7, 3-24 <br> 1-5

1-21
1-21

## W

Wildcard length

## Z

ZP see: Cyclic I/O
ZPA see: ZP output area
ZPE see: ZP input area
ZP input area (ZPE)

- lower limit
- upper limit

ZP output area (ZPA)

- lower limit
- upper limit

ZP slave life list
ZP slave response time
ZP slave watchdog

$7-2$, $7-3$   $7-6$    $7-6$    $7-2$ $7-3$   $7-6$    $7-6$    $7-2$ $7-3$   $7-14$    $7-10$ $7-11$   $7-11$

# Siemens AG <br> AUT 125 Doku <br> Postfach 1963 <br> D-92209 Amberg <br> Federal Republic of Germany 

From:
Your Name:
Your Title:
Company Name: $\qquad$
Street: $\qquad$
City, Zip Code: $\qquad$
Country: $\qquad$
Phone: $\qquad$

Please check any industry that applies to you:
$\square$ Automotive
$\square$ Chemical
$\square$ Electrical Machinery
$\square$ Food
$\square$ Instrument and Control
$\square$ Nonelectrical Machinery
$\square$ Petrochemical
$\square$ Pharmaceutical
$\square$ Plastic
$\square$ Pulp and Paper
$\square$ Textiles
$\square$ Transportation
$\square$ Other $\qquad$

## Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Title of Your Manual:
Order No. of Your Manual:
Edition:

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Is the text easy to understand?
4. Does the level of technical detail meet your requirements?
5. Please rate the quality of the graphics/tables:


## Additional comments:

$\qquad$



[^0]:    * All types of data transmission (standard connection, PLC-to-PLC connection, cyclic I/O and layer 2 access) can be programmed/used in parallel.

[^1]:    * Bus parameters irrelevant for S5-95U user (for further explanations of the bus parameters, refer to PROFIBUS Standards DIN 19245)

[^2]:    Number of token frames = number of active stations on the SINEC L2 network
    2 SDN (Send Data with No acknowledge) = data transmission without acknowledgement;for standard connection (only broadcast)
    3 SDA (Send Data with Acknowledge) = data transmission with acknowledgement; for standard connection (not broadcast) and PLC to PLC connection
    4 SRD (Send and Request Data) = data transmission and data request with comfirmation ; for Cyclic I/O

[^3]:    * Under development (possible only with standard function block FB55 for the TD/OP link to SIMATIC S5, Order No. 6AV3 980-1AA21-0AX0 and over the SINEC L2 S5 module option, Order No. 6AV3 970-1XB30-0AA0)

